ABSTRACT
BACKGROUND: The zoonotic worm parasite Fasciola hepatica secretes an abundance of cathepsin L peptidases that are associated with virulence, invasiveness, feeding and migration. The peptidases are produced as inactive zymogens that activate at low pH by autocatalytic removal of their N-terminal pro-domain or propeptide. Propeptides bind to their cognate enzyme with high specificity. Little is known, however, about the mechanism by which the propeptide of FhCL3, a cathepsin L peptidase secreted by the infective newly excysted juveniles (NEJs), regulates the inhibition and activation of the mature enzyme before it is secreted into host tissues. RESULTS: Immunolocalisation/immunoblotting studies show that the FhCL3 zymogen is produced and secreted by gastrodermal cells of the NEJs gut. A recombinant propeptide of FhCL3 (ppFhCL3) was shown to be a highly potent and selective inhibitor of native and recombinant F. hepatica FhCL3 peptidase, and other members of the cathepsin L family; inhibition constant (Ki) values obtained for FhCL1, FhCL2 and FhCL3 were 0.04 nM, 0.004 nM and < 0.002 nM, respectively. These values are at least 1000-fold lower than those Ki obtained for human cathepsin L (HsCL) and human cathepsin K (HsCK) demonstrating the selectivity of the ppFhCL3 for parasite cathepsins L. By exploiting 3-D structural data we identified key molecular interactions in the specific binding between the ppFhCL3 and FhCL3 mature domain. Using recombinant variants of ppFhCL3 we demonstrated the critical importance of a pair of propeptide residues (Tyr46Lys47) for the interaction with the propeptide binding loop (PBL) of the mature enzyme and other residues (Leu66 and Glu68) that allow the propeptide to block the active site. CONCLUSIONS: The FhCL3 peptidase involved in host invasion by F. hepatica is produced as a zymogen in the NEJs gut. Regulation of its activation involves specific binding sites within the propeptide that are interdependent and act as a "clamp-like" mechanism of inhibition. These interactions are disrupted by the low pH of the NEJs gut to initiate autocatalytic activation. Our enzyme kinetics data demonstrates high potency and selectivity of the ppFhCL3 for its cognate FhCL3 enzyme, information that could be utilised to design inhibitors of parasite cathepsin L peptidases.
Subject(s)
Cathepsin L/metabolism , Fasciola hepatica/enzymology , Peptides/metabolism , Amino Acid Substitution , Animals , Cathepsin L/antagonists & inhibitors , Cathepsin L/chemistry , Enzyme Precursors/metabolism , Humans , Hydrogen-Ion Concentration , Peptides/chemistry , Protein Binding , Protein Domains , Recombinant Proteins/metabolismABSTRACT
Fasciola hepatica is a trematode parasite that causes fasciolosis in animals and humans. Fasciolosis is usually treated with triclabendazole, although drug-resistant parasites have been described in several geographical locations. An alternative to drug treatment would be the use of a vaccine, although vaccination studies that have been performed mainly in ruminants over the last 30 years, show high variability in the achieved protection and are not yet ready for commercialisation. Since F. hepatica exhibits a high degree of genomic polymorphism, variation in vaccine efficacy could be attributed, at least partially, to phenotypic differences in vaccine candidate sequences amongst parasites used in the challenge infections. To begin to address this issue, a collection of F. hepatica isolates from geographically dispersed regions, as well as parasites obtained from vaccination trials performed against a field isolate from Uruguay and the experimentally maintained South Gloucester isolate (Ridgeway Research, UK), were compiled to establish a F. hepatica Biobank. These collected isolates were used for the genetic analysis of several vaccine candidates that are important in host-parasite interactions and are the focus of the H2020 PARAGONE vaccine project (https://www.paragoneh2020.eu/), namely FhCL1, FhCL2, FhPrx, FhLAP and FhHDM. Our results show that F. hepatica exhibits a high level of conservation in the sequences encoding each of these proteins. The consequential low variability in these vaccine candidates amongst parasites from different geographical regions reinforces the idea that they would be suitable immunogens against liver fluke isolates worldwide.
Subject(s)
Alleles , Fasciola hepatica/genetics , Fasciola hepatica/immunology , Fascioliasis/veterinary , Genetic Variation , Vaccines/genetics , Animals , Antibodies, Helminth , Cattle , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Fascioliasis/immunology , Fascioliasis/parasitology , Fascioliasis/prevention & control , Goat Diseases/immunology , Goat Diseases/prevention & control , Goats/parasitology , Host-Parasite Interactions , Humans , Sequence Analysis, DNA , Vaccination , Vaccines/immunologyABSTRACT
BACKGROUND: A family of secreted cathepsin L proteases with differential activities is essential for host colonization and survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique enzyme with collagenolytic activity that favours Pro at P2. METHODOLOGY/PRINCIPAL FINDINGS: Using a novel unbiased multiplex substrate profiling and mass spectrometry methodology (MSP-MS), we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only 50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3 with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic combinatorial libraries (PS-SCL). Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket, accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67 of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased accommodation of Gly at S3. CONCLUSIONS/SIGNIFICANCE: These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively directed to specific infective stage parasite proteinases.