Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6614): eadc8969, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36048923

ABSTRACT

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Subject(s)
ADP-ribosyl Cyclase , Adaptor Proteins, Vesicular Transport , Bacteria , Bacterial Proteins , Cyclic ADP-Ribose , Plant Immunity , Toll-Like Receptors , ADP-ribosyl Cyclase/chemistry , ADP-ribosyl Cyclase/genetics , ADP-ribosyl Cyclase/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Bacteria/immunology , Bacteria/virology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic ADP-Ribose/biosynthesis , Cyclic ADP-Ribose/chemistry , Isomerism , NAD/metabolism , Protein Domains , Receptors, Interleukin-1/chemistry , Signal Transduction , Toll-Like Receptors/chemistry , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Tryptophan/chemistry , Tryptophan/genetics
2.
Cell Rep ; 39(4): 110738, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35476981

ABSTRACT

Perturbed gut microbiome development has been linked to childhood malnutrition. Here, we characterize bacterial Toll/interleukin-1 receptor (TIR) protein domains that metabolize nicotinamide adenine dinucleotide (NAD), a co-enzyme with far-reaching effects on human physiology. A consortium of 26 human gut bacterial strains, representing the diversity of TIRs observed in the microbiome and the NAD hydrolase (NADase) activities of a subset of 152 bacterial TIRs assayed in vitro, was introduced into germ-free mice. Integrating mass spectrometry and microbial RNA sequencing (RNA-seq) with consortium membership manipulation disclosed that a variant of cyclic-ADPR (v-cADPR-x) is a specific product of TIR NADase activity and a prominent, colonization-discriminatory, taxon-specific metabolite. Guided by bioinformatic analyses of biochemically validated TIRs, we find that acute malnutrition is associated with decreased fecal levels of genes encoding TIRs known or predicted to generate v-cADPR-x, as well as decreased levels of the metabolite itself. These results underscore the need to consider microbiome TIR NADases when evaluating NAD metabolism in the human holobiont.


Subject(s)
Gastrointestinal Microbiome , Malnutrition , Animals , Bacteria/metabolism , Child , Cyclic ADP-Ribose , Germ-Free Life , Humans , Mice , NAD/metabolism , NAD+ Nucleosidase/metabolism , Receptors, Interleukin-1
3.
New Phytol ; 233(2): 890-904, 2022 01.
Article in English | MEDLINE | ID: mdl-34657283

ABSTRACT

The Pseudomonas syringae DC3000 type III effector HopAM1 suppresses plant immunity and contains a Toll/interleukin-1 receptor (TIR) domain homologous to immunity-related TIR domains of plant nucleotide-binding leucine-rich repeat receptors that hydrolyze nicotinamide adenine dinucleotide (NAD+ ) and activate immunity. In vitro and in vivo assays were conducted to determine if HopAM1 hydrolyzes NAD+ and if the activity is essential for HopAM1's suppression of plant immunity and contribution to virulence. HPLC and LC-MS were utilized to analyze metabolites produced from NAD+ by HopAM1 in vitro and in both yeast and plants. Agrobacterium-mediated transient expression and in planta inoculation assays were performed to determine HopAM1's intrinsic enzymatic activity and virulence contribution. HopAM1 is catalytically active and hydrolyzes NAD+ to produce nicotinamide and a novel cADPR variant (v2-cADPR). Expression of HopAM1 triggers cell death in yeast and plants dependent on the putative catalytic residue glutamic acid 191 (E191) within the TIR domain. Furthermore, HopAM1's E191 residue is required to suppress both pattern-triggered immunity and effector-triggered immunity and promote P. syringae virulence. HopAM1 manipulates endogenous NAD+ to produce v2-cADPR and promote pathogenesis. This work suggests that HopAM1's TIR domain possesses different catalytic specificity than other TIR domain-containing NAD+ hydrolases and that pathogens exploit this activity to sabotage NAD+ metabolism for immune suppression and virulence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , NAD/metabolism , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Receptors, Interleukin-1/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL