Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Blood ; 143(25): 2666-2670, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38635757

ABSTRACT: Lysyl oxidase (LOX) is a facilitator of extracellular matrix cross-linking. Using newly developed megakaryocyte-specific LOX knockout mice, we show that LOX expressed in these scarce bone marrow cells affects bone volume and collagen architecture in a sex-dependent manner.


Megakaryocytes , Mice, Knockout , Protein-Lysine 6-Oxidase , Animals , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Mice , Male , Female , Bone and Bones/metabolism , Sex Characteristics , Collagen/metabolism , Gene Deletion , Sex Factors , Extracellular Matrix Proteins
2.
Res Sq ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38343832

The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.

3.
Sci Rep ; 13(1): 6593, 2023 04 22.
Article En | MEDLINE | ID: mdl-37087509

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.


Bone Morphogenetic Proteins , GATA6 Transcription Factor , Oxidative Stress , Pulmonary Arterial Hypertension , Animals , Mice , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension/pathology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Vascular Remodeling
4.
Oncogenesis ; 8(5): 34, 2019 May 13.
Article En | MEDLINE | ID: mdl-31086173

Extracellular lysyl oxidases (LOX and LOXL1-LOXL4) are critical for collagen biosynthesis. LOXL2 is a marker of poor survival in oral squamous cell cancer. We investigated mechanisms by which tumor cell secreted LOXL2 targets proximal mesenchymal cells to enhance tumor growth and metastasis. This study identified the first molecular mechanism for LOXL2 in the promotion of cancer via its enzymatic modification of a non-collagenous substrate in the context of paracrine signaling between tumor cells and resident fibroblasts. The role and mechanism of active LOXL2 in promoting oral cancer was evaluated and employed a novel LOXL2 small molecule inhibitor, PSX-S1C, administered to immunodeficient, and syngeneic immunocompetent orthotopic oral cancer mouse models. Tumor growth, histopathology, and metastases were monitored. In vitro mechanistic studies with conditioned tumor cell medium treatment of normal human oral fibroblasts were carried out in the presence and absence of the LOXL2 inhibitor to identify signaling mechanisms promoted by LOXL2 activity. Inhibition of LOXL2 attenuated cancer growth and lymph node metastases in the orthotopic tongue mouse models. Immunohistochemistry data indicated that LOXL2 expression in and around tumors was decreased in mice treated with the inhibitor. Inhibition of LOXL2 activity by administration of PXS-S1C to mice reduced tumor cell proliferation, accompanied by changes in morphology and in the expression of epithelial to mesenchymal transition markers. In vitro studies identified PDGFRß as a direct substrate for LOXL2, and indicated that LOXL2 and PDGF-AB together secreted by tumor cells optimally activated PDGFRß in fibroblasts to promote proliferation and the tendency toward fibrosis via ERK activation, but not AKT. Optimal fibroblast proliferation in vitro required LOXL2 activity, while tumor cell proliferation did not. Thus, tumor cell-derived LOXL2 in the microenvironment directly targets neighboring resident cells to promote a permissive local niche, in addition to its known role in collagen maturation.

5.
Ecotoxicol Environ Saf ; 141: 113-118, 2017 Jul.
Article En | MEDLINE | ID: mdl-28324817

MethylParaben (MP), a methyl ester of p-hydroxybenzoic acid, is used as an anti-microbial preservative in foods, drugs and cosmetics for decades. It enters the aquatic environment, and can have toxic effects on aquatic organisms. Little is known on the developmental toxicity of MP exposure to zebrafish during early life stages. In this study, the developmental effects of MP were evaluated in embryo-larval zebrafish (at concentrations ranging from 100µM, 200µM, 400µM, 800µM and 1000µM for 96h post fertilization (hpf). The survival, hatching, heart beat rate and developmental abnormalities were observed in the embryos exposed to MP. MP exposure resulted in decreased heart rate and hatching rate. Defects including pericardial edema blood cell accumulation and bent spine were observed in all the treated concentration, except at 100µM. With increasing concentrations, the frequency of these defects increased. The 96 hpf LC50 of MP was calculated to be 428µM (0.065mg/L). Furthermore, RT-PCR result showed that in larval zebrafish exposed to 100µM (0.015mg/L) of MP till 96 hpf, expression of vitellogenin I (Vtg -I) was significantly upregulated compared to the control group. This data suggest that even though lower concentrations of MP do not cause phenotypic malformations, it leads to dysregulated expression of estrogenic biomarker gene Vtg-I.


Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Parabens/toxicity , Vitellogenins/biosynthesis , Water Pollutants, Chemical/toxicity , Zebrafish/embryology , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/metabolism , Larva , Lethal Dose 50 , Reproduction/drug effects , Up-Regulation , Vitellogenins/genetics , Zebrafish/abnormalities , Zebrafish/genetics
...