Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 28(40): 14364-72, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22974532

ABSTRACT

We examined the effect of bilayer composition on membrane sensitivity to low-frequency ultrasound (LFUS) in bilayers composed of ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), dipalmitoyl-phosphocholine (DPPC), and cholesterol. The phase diagram of this system does not display macroscopic phase coexistence between liquid phases (although there are suggestions that there is coexistence between a liquid and a solid phase). Samples from across the composition space were exposed to 20 kHz, continuous wave ultrasound, and the response of the bilayer was quantified using steady-state fluorescence spectroscopy to measure the release of a self-quenching dye, calcein, from large unilamellar vesicles. Dynamic light scattering measurements indicate that, in this system, release proceeds primarily by transport through the vesicle bilayer. While vesicle destruction might account, at least in part, for the light scattering trends observed, evidence of destruction was not as obvious as in other lipid systems. Values for bilayer permeability are obtained by fitting release kinetics to a two-film theory mathematical model. The permeability due to LFUS is found to increase with increasing DPPC content, as the bilayer tends toward the solid-ordered phase. Permeability, and thus sensitivity to LFUS, decreases with either POPC or cholesterol mole fractions. In the liquid regime of this system, there is no recorded phase transition; thus cholesterol is the determining factor in release rates. However, the presence of domain boundaries between distinctly differing phases of liquid and solid is found to cause release rates to more than double. The correlation of permeability with phase behavior might prove useful in designing and developing therapies based on ultrasound and membrane interactions.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Ultrasonics , 1,2-Dipalmitoylphosphatidylcholine/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Diffusion , Kinetics , Liposomes/chemistry , Liposomes/metabolism , Phase Transition , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism
2.
Theranostics ; 2(12): 1140-59, 2012.
Article in English | MEDLINE | ID: mdl-23382772

ABSTRACT

This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition-- in particular, poly (ethylene glyclol) (PEG)--is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the "brush" regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those--not necessarily involving microubbles--to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly "theranostic" vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery.


Subject(s)
Lipid Bilayers/chemistry , Microbubbles , Animals , Humans , Polyethylene Glycols/chemistry , Ultrasonics , Unilamellar Liposomes/chemistry
3.
J Colloid Interface Sci ; 354(2): 478-82, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21122874

ABSTRACT

Colloidosomes are aqueous cores surrounded by a shell composed of packed colloidal particles. Recent studies suggest that these colloidal shells reduce, or even inhibit, the transport of molecular species (diffusants). However, the effect of the colloidal shell on transport is unclear: In some cases, the reduction in transport of diffusants through the shell was found to be independent of the size of the colloidal particles composing the shell. Other studies find, however, that shells composed of small colloidal particles of order 100nm or less hindered transport of diffusants more than those composed of micro-scale colloidal particles. In this paper we present a simple diffusion model that accounts for three processes that reduce diffusant transport through the shell: (i) a reduction in the penetrable volume available for transport, which also increases the tortuousity of the diffusional path, (ii) narrow pore size which may hinder transport for larger diffusants through size exclusion, and (iii) a reduction in interfacial area due to 'blocking' of the surface by the adsorbed particles. We find that the colloidal particle size does not affect the reduction in transport through the colloidal shell when the shell is a monolayer. However, in closely packed, thick layers where the thickness of the multi-layer shell is fixed, the rate of transport decreases significantly with colloidal particle dimensions. These results are in excellent agreement with previously published experimental results.


Subject(s)
Colloids/chemistry , Diffusion , Models, Chemical , Particle Size
4.
J Colloid Interface Sci ; 349(2): 498-504, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20579657

ABSTRACT

Recent studies suggest that coating microcapsules by a shell composed of impenetrable colloidal particles (thereby forming 'colloidosomes') can be used to control surface porosity, and therefore, permeability. The voids between the particles in the coating define the size of the surface pores available for transport. However, to date, data demonstrating this selectivity has been largely qualitative. In this paper we examine, quantitatively, the effect of a surface coating (shell), composed of colloidal particles, on release from hydrogels. We find that the presence of a colloidal shell does indeed reduce the rate of transport of three model molecules: Aspirin, caffeine, and FITC-dextran with MW of approximately 3000-5000. Contrary to expectation, however, we find that for all three molecules the reduction in transport rate is largely independent of the dimensions of the particles composing the shell, despite differences that range over three orders of magnitude. In the case of the small molecules, caffeine and aspirin, the colloidal shell reduces the effective diffusion coefficient by a factor of 3. In the case of dextran, the suppression in the release rate due to the colloidal shell was much larger. These results are explained using a simple diffusion model that accounts for the volume fraction and diameter of the colloidal particles in the shell, and the size of the diffusing molecules.

SELECTION OF CITATIONS
SEARCH DETAIL