Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Addict Med ; 18(3): 218-239, 2024.
Article in English | MEDLINE | ID: mdl-38591783

ABSTRACT

BACKGROUND: This systematic review summarizes the development, accuracy, quality, and clinical utility of predictive models to assess the risk of opioid use disorder (OUD), persistent opioid use, and opioid overdose. METHODS: In accordance with Preferred Reporting Items for a Systematic Review and Meta-analysis guidelines, 8 electronic databases were searched for studies on predictive models and OUD, overdose, or persistent use in adults until June 25, 2023. Study selection and data extraction were completed independently by 2 reviewers. Risk of bias of included studies was assessed independently by 2 reviewers using the Prediction model Risk of Bias ASsessment Tool (PROBAST). RESULTS: The literature search yielded 3130 reports; after removing 199 duplicates, excluding 2685 studies after abstract review, and excluding 204 studies after full-text review, the final sample consisted of 41 studies that developed more than 160 predictive models. Primary outcomes included opioid overdose (31.6% of studies), OUD (41.4%), and persistent opioid use (17%). The most common modeling approach was regression modeling, and the most common predictors included age, sex, mental health diagnosis history, and substance use disorder history. Most studies reported model performance via the c statistic, ranging from 0.507 to 0.959; gradient boosting tree models and neural network models performed well in the context of their own study. One study deployed a model in real time. Risk of bias was predominantly high; concerns regarding applicability were predominantly low. CONCLUSIONS: Models to predict opioid-related risks are developed using diverse data sources and predictors, with a wide and heterogenous range of accuracy metrics. There is a need for further research to improve their accuracy and implementation.


Subject(s)
Opiate Overdose , Opioid-Related Disorders , Humans , Opiate Overdose/epidemiology , Risk Assessment , Models, Statistical , Analgesics, Opioid/adverse effects
2.
Front Digit Health ; 4: 893070, 2022.
Article in English | MEDLINE | ID: mdl-35774115

ABSTRACT

Clinical researchers are using mobile-based sensors to obtain detailed and objective measures of the activity and health of research participants, but many investigators lack expertise in integrating wearables and sensor technologies effectively into their studies. Here, we describe the steps taken to design a study using sensors for disease monitoring in older adults and explore the benefits and drawbacks of our approach. In this study, the Geriatric Acute and Post-acute Fall Prevention Intervention (GAPcare), we created an iOS app to collect data from the Apple Watch's gyroscope, accelerometer, and other sensors; results of cognitive and fitness tests; and participant-entered survey data. We created the study app using ResearchKit, an open-source framework developed by Apple for medical research that includes neuropsychological tests (e.g., of executive function and memory), gait speed, balance, and other health assessments. Data is transmitted via an Application Programming Interface (API) from the app to REDCap for researchers to monitor and analyze in real-time. Employing the lessons learned from GAPcare could help researchers create study-tailored research apps and access timely information about their research participants from wearables and smartphone devices for disease prevention, monitoring, and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...