Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
JMIR Public Health Surveill ; 10: e51007, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008362

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by SARS-CoV-2, has had a profound impact worldwide, leading to widespread morbidity and mortality. Vaccination against COVID-19 is a critical tool in controlling the spread of the virus and reducing the severity of the disease. However, the rapid development and deployment of COVID-19 vaccines have raised concerns about potential adverse events following immunization (AEFIs). Understanding the temporal and spatial patterns of these AEFIs is crucial for an effective public health response and vaccine safety monitoring. OBJECTIVE: This study aimed to analyze the temporal and spatial characteristics of AEFIs associated with COVID-19 vaccines in the United States reported to the Vaccine Adverse Event Reporting System (VAERS), thereby providing insights into the patterns and distributions of the AEFIs, the safety profile of COVID-19 vaccines, and potential risk factors associated with the AEFIs. METHODS: We conducted a retrospective analysis of administration data from the Centers for Disease Control and Prevention (n=663,822,575) and reports from the surveillance system VAERS (n=900,522) between 2020 and 2022. To gain a broader understanding of postvaccination AEFIs reported, we categorized them into system organ classes (SOCs) according to the Medical Dictionary for Regulatory Activities. Additionally, we performed temporal analysis to examine the trends of AEFIs in all VAERS reports, those related to Pfizer-BioNTech and Moderna, and the top 10 AEFI trends in serious reports. We also compared the similarity of symptoms across various regions within the United States. RESULTS: Our findings revealed that the most frequently reported symptoms following COVID-19 vaccination were headache (n=141,186, 15.68%), pyrexia (n=122,120, 13.56%), and fatigue (n=121,910, 13.54%). The most common symptom combination was chills and pyrexia (n=56,954, 6.32%). Initially, general disorders and administration site conditions (SOC 22) were the most prevalent class reported. Moderna exhibited a higher reporting rate of AEFIs compared to Pfizer-BioNTech. Over time, we observed a decreasing reporting rate of AEFIs associated with COVID-19 vaccines. In addition, the overall rates of AEFIs between the Pfizer-BioNTech and Moderna vaccines were comparable. In terms of spatial analysis, the middle and north regions of the United States displayed a higher reporting rate of AEFIs associated with COVID-19 vaccines, while the southeast and south-central regions showed notable similarity in symptoms reported. CONCLUSIONS: This study provides valuable insights into the temporal and spatial patterns of AEFIs associated with COVID-19 vaccines in the United States. The findings underscore the critical need for increasing vaccination coverage, as well as ongoing surveillance and monitoring of AEFIs. Implementing targeted monitoring programs can facilitate the effective and efficient management of AEFIs, enhancing public confidence in future COVID-19 vaccine campaigns.


Subject(s)
COVID-19 Vaccines , Humans , United States/epidemiology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Retrospective Studies , Male , Female , Middle Aged , Adult , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions/epidemiology , Aged , COVID-19/prevention & control , COVID-19/epidemiology , Spatial Analysis , Spatio-Temporal Analysis , Young Adult , Adolescent
2.
JMIR Aging ; 7: e54748, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976869

ABSTRACT

BACKGROUND: Alzheimer disease and related dementias (ADRD) rank as the sixth leading cause of death in the United States, underlining the importance of accurate ADRD risk prediction. While recent advancements in ADRD risk prediction have primarily relied on imaging analysis, not all patients undergo medical imaging before an ADRD diagnosis. Merging machine learning with claims data can reveal additional risk factors and uncover interconnections among diverse medical codes. OBJECTIVE: The study aims to use graph neural networks (GNNs) with claim data for ADRD risk prediction. Addressing the lack of human-interpretable reasons behind these predictions, we introduce an innovative, self-explainable method to evaluate relationship importance and its influence on ADRD risk prediction. METHODS: We used a variationally regularized encoder-decoder GNN (variational GNN [VGNN]) integrated with our proposed relation importance method for estimating ADRD likelihood. This self-explainable method can provide a feature-important explanation in the context of ADRD risk prediction, leveraging relational information within a graph. Three scenarios with 1-year, 2-year, and 3-year prediction windows were created to assess the model's efficiency, respectively. Random forest (RF) and light gradient boost machine (LGBM) were used as baselines. By using this method, we further clarify the key relationships for ADRD risk prediction. RESULTS: In scenario 1, the VGNN model showed area under the receiver operating characteristic (AUROC) scores of 0.7272 and 0.7480 for the small subset and the matched cohort data set. It outperforms RF and LGBM by 10.6% and 9.1%, respectively, on average. In scenario 2, it achieved AUROC scores of 0.7125 and 0.7281, surpassing the other models by 10.5% and 8.9%, respectively. Similarly, in scenario 3, AUROC scores of 0.7001 and 0.7187 were obtained, exceeding 10.1% and 8.5% than the baseline models, respectively. These results clearly demonstrate the significant superiority of the graph-based approach over the tree-based models (RF and LGBM) in predicting ADRD. Furthermore, the integration of the VGNN model and our relation importance interpretation could provide valuable insight into paired factors that may contribute to or delay ADRD progression. CONCLUSIONS: Using our innovative self-explainable method with claims data enhances ADRD risk prediction and provides insights into the impact of interconnected medical code relationships. This methodology not only enables ADRD risk modeling but also shows potential for other image analysis predictions using claims data.


Subject(s)
Alzheimer Disease , Neural Networks, Computer , Humans , Alzheimer Disease/diagnosis , Risk Assessment/methods , Algorithms , Female , Aged , Male , Dementia/epidemiology , Dementia/diagnosis , Machine Learning , Risk Factors
3.
Article in English | MEDLINE | ID: mdl-38857454

ABSTRACT

OBJECTIVES: Precise literature recommendation and summarization are crucial for biomedical professionals. While the latest iteration of generative pretrained transformer (GPT) incorporates 2 distinct modes-real-time search and pretrained model utilization-it encounters challenges in dealing with these tasks. Specifically, the real-time search can pinpoint some relevant articles but occasionally provides fabricated papers, whereas the pretrained model excels in generating well-structured summaries but struggles to cite specific sources. In response, this study introduces RefAI, an innovative retrieval-augmented generative tool designed to synergize the strengths of large language models (LLMs) while overcoming their limitations. MATERIALS AND METHODS: RefAI utilized PubMed for systematic literature retrieval, employed a novel multivariable algorithm for article recommendation, and leveraged GPT-4 turbo for summarization. Ten queries under 2 prevalent topics ("cancer immunotherapy and target therapy" and "LLMs in medicine") were chosen as use cases and 3 established counterparts (ChatGPT-4, ScholarAI, and Gemini) as our baselines. The evaluation was conducted by 10 domain experts through standard statistical analyses for performance comparison. RESULTS: The overall performance of RefAI surpassed that of the baselines across 5 evaluated dimensions-relevance and quality for literature recommendation, accuracy, comprehensiveness, and reference integration for summarization, with the majority exhibiting statistically significant improvements (P-values <.05). DISCUSSION: RefAI demonstrated substantial improvements in literature recommendation and summarization over existing tools, addressing issues like fabricated papers, metadata inaccuracies, restricted recommendations, and poor reference integration. CONCLUSION: By augmenting LLM with external resources and a novel ranking algorithm, RefAI is uniquely capable of recommending high-quality literature and generating well-structured summaries, holding the potential to meet the critical needs of biomedical professionals in navigating and synthesizing vast amounts of scientific literature.

4.
medRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826441

ABSTRACT

The consistent and persuasive evidence illustrating the influence of social determinants on health has prompted a growing realization throughout the health care sector that enhancing health and health equity will likely depend, at least to some extent, on addressing detrimental social determinants. However, detailed social determinants of health (SDoH) information is often buried within clinical narrative text in electronic health records (EHRs), necessitating natural language processing (NLP) methods to automatically extract these details. Most current NLP efforts for SDoH extraction have been limited, investigating on limited types of SDoH elements, deriving data from a single institution, focusing on specific patient cohorts or note types, with reduced focus on generalizability. This study aims to address these issues by creating cross-institutional corpora spanning different note types and healthcare systems, and developing and evaluating the generalizability of classification models, including novel large language models (LLMs), for detecting SDoH factors from diverse types of notes from four institutions: Harris County Psychiatric Center, University of Texas Physician Practice, Beth Israel Deaconess Medical Center, and Mayo Clinic. Four corpora of deidentified clinical notes were annotated with 21 SDoH factors at two levels: level 1 with SDoH factor types only and level 2 with SDoH factors along with associated values. Three traditional classification algorithms (XGBoost, TextCNN, Sentence BERT) and an instruction tuned LLM-based approach (LLaMA) were developed to identify multiple SDoH factors. Substantial variation was noted in SDoH documentation practices and label distributions based on patient cohorts, note types, and hospitals. The LLM achieved top performance with micro-averaged F1 scores over 0.9 on level 1 annotated corpora and an F1 over 0.84 on level 2 annotated corpora. While models performed well when trained and tested on individual datasets, cross-dataset generalization highlighted remaining obstacles. To foster collaboration, access to partial annotated corpora and models trained by merging all annotated datasets will be made available on the PhysioNet repository.

5.
J Biomed Inform ; 152: 104623, 2024 04.
Article in English | MEDLINE | ID: mdl-38458578

ABSTRACT

INTRODUCTION: Patients' functional status assesses their independence in performing activities of daily living, including basic ADLs (bADL), and more complex instrumental activities (iADL). Existing studies have discovered that patients' functional status is a strong predictor of health outcomes, particularly in older adults. Depite their usefulness, much of the functional status information is stored in electronic health records (EHRs) in either semi-structured or free text formats. This indicates the pressing need to leverage computational approaches such as natural language processing (NLP) to accelerate the curation of functional status information. In this study, we introduced FedFSA, a hybrid and federated NLP framework designed to extract functional status information from EHRs across multiple healthcare institutions. METHODS: FedFSA consists of four major components: 1) individual sites (clients) with their private local data, 2) a rule-based information extraction (IE) framework for ADL extraction, 3) a BERT model for functional status impairment classification, and 4) a concept normalizer. The framework was implemented using the OHNLP Backbone for rule-based IE and open-source Flower and PyTorch library for federated BERT components. For gold standard data generation, we carried out corpus annotation to identify functional status-related expressions based on ICF definitions. Four healthcare institutions were included in the study. To assess FedFSA, we evaluated the performance of category- and institution-specific ADL extraction across different experimental designs. RESULTS: ADL extraction performance ranges from an F1-score of 0.907 to 0.986 for bADL and 0.825 to 0.951 for iADL across the four healthcare sites. The performance for ADL extraction with impairment ranges from an F1-score of 0.722 to 0.954 for bADL and 0.674 to 0.813 for iADL across four healthcare sites. For category-specific ADL extraction, laundry and transferring yielded relatively high performance, while dressing, medication, bathing, and continence achieved moderate-high performance. Conversely, food preparation and toileting showed low performance. CONCLUSION: NLP performance varied across ADL categories and healthcare sites. Federated learning using a FedFSA framework performed higher than non-federated learning for impaired ADL extraction at all healthcare sites. Our study demonstrated the potential of the federated learning framework in functional status extraction and impairment classification in EHRs, exemplifying the importance of a large-scale, multi-institutional collaborative development effort.


Subject(s)
Activities of Daily Living , Functional Status , Humans , Aged , Learning , Information Storage and Retrieval , Natural Language Processing
6.
Online J Public Health Inform ; 16: e52845, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477963

ABSTRACT

BACKGROUND: Social determinants of health (SDoH) have been described by the World Health Organization as the conditions in which individuals are born, live, work, and age. These conditions can be grouped into 3 interrelated levels known as macrolevel (societal), mesolevel (community), and microlevel (individual) determinants. The scope of SDoH expands beyond the biomedical level, and there remains a need to connect other areas such as economics, public policy, and social factors. OBJECTIVE: Providing a computable artifact that can link health data to concepts involving the different levels of determinants may improve our understanding of the impact SDoH have on human populations. Modeling SDoH may help to reduce existing gaps in the literature through explicit links between the determinants and biological factors. This in turn can allow researchers and clinicians to make better sense of data and discover new knowledge through the use of semantic links. METHODS: An experimental ontology was developed to represent knowledge of the social and economic characteristics of SDoH. Information from 27 literature sources was analyzed to gather concepts and encoded using Web Ontology Language, version 2 (OWL2) and Protégé. Four evaluators independently reviewed the ontology axioms using natural language translation. The analyses from the evaluations and selected terminologies from the Basic Formal Ontology were used to create a revised ontology with a broad spectrum of knowledge concepts ranging from the macrolevel to the microlevel determinants. RESULTS: The literature search identified several topics of discussion for each determinant level. Publications for the macrolevel determinants centered around health policy, income inequality, welfare, and the environment. Articles relating to the mesolevel determinants discussed work, work conditions, psychosocial factors, socioeconomic position, outcomes, food, poverty, housing, and crime. Finally, sources found for the microlevel determinants examined gender, ethnicity, race, and behavior. Concepts were gathered from the literature and used to produce an ontology consisting of 383 classes, 109 object properties, and 748 logical axioms. A reasoning test revealed no inconsistent axioms. CONCLUSIONS: This ontology models heterogeneous social and economic concepts to represent aspects of SDoH. The scope of SDoH is expansive, and although the ontology is broad, it is still in its early stages. To our current understanding, this ontology represents the first attempt to concentrate on knowledge concepts that are currently not covered by existing ontologies. Future direction will include further expanding the ontology to link with other biomedical ontologies, including alignment for granular semantics.

7.
J Am Heart Assoc ; 13(3): e029900, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293921

ABSTRACT

BACKGROUND: The rapid evolution of artificial intelligence (AI) in conjunction with recent updates in dual antiplatelet therapy (DAPT) management guidelines emphasizes the necessity for innovative models to predict ischemic or bleeding events after drug-eluting stent implantation. Leveraging AI for dynamic prediction has the potential to revolutionize risk stratification and provide personalized decision support for DAPT management. METHODS AND RESULTS: We developed and validated a new AI-based pipeline using retrospective data of drug-eluting stent-treated patients, sourced from the Cerner Health Facts data set (n=98 236) and Optum's de-identified Clinformatics Data Mart Database (n=9978). The 36 months following drug-eluting stent implantation were designated as our primary forecasting interval, further segmented into 6 sequential prediction windows. We evaluated 5 distinct AI algorithms for their precision in predicting ischemic and bleeding risks. Model discriminative accuracy was assessed using the area under the receiver operating characteristic curve, among other metrics. The weighted light gradient boosting machine stood out as the preeminent model, thus earning its place as our AI-DAPT model. The AI-DAPT demonstrated peak accuracy in the 30 to 36 months window, charting an area under the receiver operating characteristic curve of 90% [95% CI, 88%-92%] for ischemia and 84% [95% CI, 82%-87%] for bleeding predictions. CONCLUSIONS: Our AI-DAPT excels in formulating iterative, refined dynamic predictions by assimilating ongoing updates from patients' clinical profiles, holding value as a novel smart clinical tool to facilitate optimal DAPT duration management with high accuracy and adaptability.


Subject(s)
Coronary Artery Disease , Drug-Eluting Stents , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Platelet Aggregation Inhibitors/adverse effects , Myocardial Infarction/etiology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/surgery , Drug-Eluting Stents/adverse effects , Artificial Intelligence , Retrospective Studies , Treatment Outcome , Risk Factors , Drug Therapy, Combination , Hemorrhage/chemically induced , Prognosis , Percutaneous Coronary Intervention/adverse effects
8.
Small ; 20(9): e2307448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845027

ABSTRACT

Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.


Subject(s)
Pyroptosis , Radium , Radium/pharmacology , Radium/therapeutic use , Cell Death , DNA
9.
Expert Rev Vaccines ; 23(1): 53-59, 2024.
Article in English | MEDLINE | ID: mdl-38063069

ABSTRACT

INTRODUCTION: The rapid development of COVID-19 vaccines has provided crucial tools for pandemic control, but the occurrence of vaccine-related adverse events (AEs) underscores the need for comprehensive monitoring. METHODS: This study analyzed the Vaccine Adverse Event Reporting System (VAERS) data from 2020-2022 using statistical methods such as zero-truncated Poisson regression and logistic regression to assess associations with age, gender groups, and vaccine manufacturers. RESULTS: Logistic regression identified 26 System Organ Classes (SOCs) significantly associated with age and gender. Females displayed especially higher odds in SOC 19 (Pregnancy, puerperium and perinatal conditions), while males had higher odds in SOC 25 (Surgical and medical procedures). Older adults (>65) were more prone to symptoms like Cardiac disorders, whereas those aged 18-65 showed susceptibility to AEs like Skin and subcutaneous tissue disorders. Moderna and Pfizer vaccines induced fewer SOC symptoms compared to Janssen and Novavax. The zero-truncated Poisson regression model estimated an average of 4.243 symptoms per individual. CONCLUSION: These findings offer vital insights into vaccine safety, guiding evidence-based vaccination strategies and monitoring programs for precise and effective outcomes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines , Aged , Female , Humans , Male , Pregnancy , Adverse Drug Reaction Reporting Systems , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , United States , Vaccination/adverse effects , Vaccines/adverse effects
10.
Mol Cell ; 83(21): 3885-3903.e5, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37832545

ABSTRACT

The translocation of stimulator of interferon genes (STING) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) enables its activation. However, the mechanism underlying the regulation of STING exit from the ER remains elusive. Here, we found that STING induces the activation of transforming growth factor beta-activated kinase 1 (TAK1) prior to STING trafficking in a TAK1 binding protein 1 (TAB1)-dependent manner. Intriguingly, activated TAK1 directly mediates STING phosphorylation on serine 355, which facilitates its interaction with STING ER exit protein (STEEP) and thereby promotes its oligomerization and translocation to the ERGIC for subsequent activation. Importantly, activation of TAK1 by monophosphoryl lipid A, a TLR4 agonist, boosts cGAMP-induced antitumor immunity dependent on STING phosphorylation in a mouse allograft tumor model. Taken together, TAK1 was identified as a checkpoint for STING activation by promoting its trafficking, providing a basis for combinatory tumor immunotherapy and intervention in STING-related diseases.


Subject(s)
Neoplasms , Animals , Mice , Phosphorylation
11.
J Am Med Inform Assoc ; 30(9): 1465-1473, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37301740

ABSTRACT

OBJECTIVE: Social determinants of health (SDoH) play critical roles in health outcomes and well-being. Understanding the interplay of SDoH and health outcomes is critical to reducing healthcare inequalities and transforming a "sick care" system into a "health-promoting" system. To address the SDOH terminology gap and better embed relevant elements in advanced biomedical informatics, we propose an SDoH ontology (SDoHO), which represents fundamental SDoH factors and their relationships in a standardized and measurable way. MATERIAL AND METHODS: Drawing on the content of existing ontologies relevant to certain aspects of SDoH, we used a top-down approach to formally model classes, relationships, and constraints based on multiple SDoH-related resources. Expert review and coverage evaluation, using a bottom-up approach employing clinical notes data and a national survey, were performed. RESULTS: We constructed the SDoHO with 708 classes, 106 object properties, and 20 data properties, with 1,561 logical axioms and 976 declaration axioms in the current version. Three experts achieved 0.967 agreement in the semantic evaluation of the ontology. A comparison between the coverage of the ontology and SDOH concepts in 2 sets of clinical notes and a national survey instrument also showed satisfactory results. DISCUSSION: SDoHO could potentially play an essential role in providing a foundation for a comprehensive understanding of the associations between SDoH and health outcomes and paving the way for health equity across populations. CONCLUSION: SDoHO has well-designed hierarchies, practical objective properties, and versatile functionalities, and the comprehensive semantic and coverage evaluation achieved promising performance compared to the existing ontologies relevant to SDoH.


Subject(s)
Health Equity , Social Determinants of Health , Humans , Semantics , Healthcare Disparities
12.
J Am Med Inform Assoc ; 30(8): 1408-1417, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37040620

ABSTRACT

OBJECTIVES: Suicide presents a major public health challenge worldwide, affecting people across the lifespan. While previous studies revealed strong associations between Social Determinants of Health (SDoH) and suicide deaths, existing evidence is limited by the reliance on structured data. To resolve this, we aim to adapt a suicide-specific SDoH ontology (Suicide-SDoHO) and use natural language processing (NLP) to effectively identify individual-level SDoH-related social risks from death investigation narratives. MATERIALS AND METHODS: We used the latest National Violent Death Report System (NVDRS), which contains 267 804 victim suicide data from 2003 to 2019. After adapting the Suicide-SDoHO, we developed a transformer-based model to identify SDoH-related circumstances and crises in death investigation narratives. We applied our model retrospectively to annotate narratives whose crisis variables were not coded in NVDRS. The crisis rates were calculated as the percentage of the group's total suicide population with the crisis present. RESULTS: The Suicide-SDoHO contains 57 fine-grained circumstances in a hierarchical structure. Our classifier achieves AUCs of 0.966 and 0.942 for classifying circumstances and crises, respectively. Through the crisis trend analysis, we observed that not everyone is equally affected by SDoH-related social risks. For the economic stability crisis, our result showed a significant increase in crisis rate in 2007-2009, parallel with the Great Recession. CONCLUSIONS: This is the first study curating a Suicide-SDoHO using death investigation narratives. We showcased that our model can effectively classify SDoH-related social risks through NLP approaches. We hope our study will facilitate the understanding of suicide crises and inform effective prevention strategies.


Subject(s)
Homicide , Suicide , Humans , Natural Language Processing , Retrospective Studies , Social Determinants of Health , Cause of Death , Violence , Population Surveillance
13.
Cell Rep ; 42(3): 112275, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943864

ABSTRACT

Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment.


Subject(s)
Alanine , Antineoplastic Agents , Neoplasms , Nucleotidyltransferases , Triazines , Humans , High-Throughput Screening Assays , Alanine/analogs & derivatives , Nucleotidyltransferases/metabolism , Interferons/immunology , Cisplatin/administration & dosage , Antineoplastic Agents/administration & dosage , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Tumor Cells, Cultured/drug effects , Neoplasms/drug therapy
14.
J Mol Cell Biol ; 14(5)2022 09 15.
Article in English | MEDLINE | ID: mdl-35536585

ABSTRACT

Pattern recognition receptors are critical for the sensing of pathogen-associated molecular patterns or danger-associated molecular patterns and subsequent mounting of innate immunity and shaping of adaptive immunity. The identification of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) as a major cytosolic DNA receptor is a milestone in the field of DNA sensing. The engagement of cGAS by double-stranded DNA from different origins, including invading pathogens, damaged mitochondria, ruptured micronuclei, and genomic DNA results in the generation of cGAMP and activation of stimulator of interferon genes, which thereby activates innate immunity mainly characterized by the activation of type I interferon response. In recent years, great progress has been made in understanding the subcellular localization and novel functions of cGAS. In this review, we particularly focus on summarizing the multifaceted roles of cGAS in regulating senescence, autophagy, cell stemness, apoptosis, angiogenesis, cell proliferation, antitumor effect, DNA replication, DNA damage repair, micronucleophagy, as well as cell metabolism.


Subject(s)
Interferon Type I , Pathogen-Associated Molecular Pattern Molecules , DNA/metabolism , Immunity, Innate , Interferon Type I/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction
15.
Mol Cell ; 82(11): 2032-2049.e7, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35460603

ABSTRACT

Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.


Subject(s)
Antiviral Agents , Nucleotidyltransferases , Antiviral Agents/pharmacology , Cytoplasm/genetics , Cytoplasm/metabolism , DNA , DNA Damage , Genomic Instability , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism
16.
EMBO Rep ; 23(6): e53932, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35403787

ABSTRACT

Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.


Subject(s)
Autoimmune Diseases , Neoplasms , Animals , Autoimmune Diseases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neoplasms/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use
18.
Aliment Pharmacol Ther ; 54(4): 481-492, 2021 08.
Article in English | MEDLINE | ID: mdl-34224163

ABSTRACT

BACKGROUND: Previous studies have demonstrated an association between nonselective beta-blockers (NSBBs) and lower risk of hepatocellular carcinoma (HCC) in cirrhosis. However, there has been no population-based study investigating the risk of HCC among cirrhotic patients treated using carvedilol. AIMS: To determine the risk of HCC among cirrhotic patients with NSBBs including carvedilol. METHODS: This retrospective cohort study utilised the Cerner Health Facts database in the United States from 2000 to 2017. Kaplan-Meier estimate, Cox proportional hazards regression, and propensity score matching (PSM) were used to test the HCC risk among the carvedilol, nadolol, and propranolol groups compared with no beta-blocker group. RESULTS: The final cohort comprised 107 428 eligible patients. The 100-month cumulative HCC incidence of NSBBs was significantly lower than the no beta-blocker group (carvedilol (11.24%) vs no beta-blocker (15.69%), nadolol (27.55%) vs no beta-blocker (32.11%), and propranolol (26.17%) vs no beta-blocker (28.84%) (P values < 0.0001). NSBBs were associated with a significantly lower risk of HCC (Hazard ratio: carvedilol 0.61 (95% CI 0.51-0.73), nadolol 0.74 (95% CI 0.63-0.87), propranolol 0.75 (95% CI 0.66-0.84) after PSM in the multivariate cox analysis. In subgroup analysis, NSBBs reduced the risk of HCC in cirrhosis with complications and non-alcoholic cirrhosis. CONCLUSIONS: NSBBs, including carvedilol, were associated with a significantly decreased risk of HCC in patients with cirrhosis when compared with no beta-blocker regardless of complications status. Future randomised-controlled studies comparing the incidence of HCC among NSBBs should elucidate which NSBB would be the best option to prevent HCC in cirrhosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Adrenergic beta-Antagonists/therapeutic use , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/prevention & control , Humans , Liver Cirrhosis/epidemiology , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Retrospective Studies , United States/epidemiology
19.
Genes (Basel) ; 11(12)2020 12 19.
Article in English | MEDLINE | ID: mdl-33352742

ABSTRACT

Myxofibrosarcoma is a complex genetic disease with poor prognosis. However, more effective biomarkers that forebode poor prognosis in Myxofibrosarcoma remain to be determined. Herein, utilizing gene expression profiling data and clinical follow-up data of Myxofibrosarcoma cases in three independent cohorts with a total of 128 Myxofibrosarcoma samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we constructed an easy-to-use web tool, named Online consensus Survival analysis for Myxofibrosarcoma (OSmfs) to analyze the prognostic value of certain genes. Through retrieving the database, users generate a Kaplan-Meier plot with log-rank test and hazard ratio (HR) to assess prognostic-related genes or discover novel Myxofibrosarcoma prognostic biomarkers. The effectiveness and availability of OSmfs were validated using genes in ever reports predicting the prognosis of Myxofibrosarcoma patients. Furthermore, utilizing the cox analysis data and transcriptome data establishing OSmfs, seven genes were selected and considered as more potentially prognostic biomarkers through overlapping and ROC analysis. In conclusion, OSmfs is a promising web tool to evaluate the prognostic potency and reliability of genes in Myxofibrosarcoma, which may significantly contribute to the enrichment of novelly potential prognostic biomarkers and therapeutic targets for Myxofibrosarcoma.


Subject(s)
Biomarkers, Tumor/genetics , Fibroma/genetics , Fibrosarcoma/genetics , Internet , Software , Area Under Curve , Base Sequence , Biomarkers, Tumor/analysis , Datasets as Topic , Fibroma/chemistry , Fibroma/mortality , Fibrosarcoma/chemistry , Fibrosarcoma/mortality , Gene Ontology , Humans , Kaplan-Meier Estimate , Prognosis , Proportional Hazards Models , ROC Curve , Survival Analysis
20.
Front Genet ; 11: 420, 2020.
Article in English | MEDLINE | ID: mdl-32528519

ABSTRACT

Lung cancer is the principal cause of leading cancer-related incidence and mortality in the world. Various studies have excavated the potential prognostic biomarkers for cancer patients based on gene expression profiles. However, most of these reported biomarkers lack independent validation in multiple cohorts. Herein, we collected 35 datasets with long-term follow-up clinical information from TCGA (2 cohorts), GEO (32 cohorts), and Roepman study (1 cohort), and developed a web server named OSluca (Online consensus Survival for Lung Cancer) to assess the prognostic value of genes in lung cancer. The input of OSluca is an official gene symbol, and the output web page of OSluca displays the survival analysis summary with a forest plot and a survival table from Cox proportional regression in each cohort and combined cohorts. To test the performance of OSluca, 104 previously reported prognostic biomarkers in lung carcinoma were evaluated in OSluca. In conclusion, OSluca is a highly valuable and interactive prognostic web server for lung cancer. It can be accessed at http:// bioinfo.henu.edu.cn/LUCA/LUCAList.jsp.

SELECTION OF CITATIONS
SEARCH DETAIL
...