Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Radiother Oncol ; 189: 109910, 2023 12.
Article in English | MEDLINE | ID: mdl-37709052

ABSTRACT

BACKGROUND: Stereotactic arrhythmia radioablation (STAR) appears to be beneficial in selected patients with therapy-refractory ventricular tachycardia (VT). However, high-dose radiotherapy used for STAR-treatment may affect functioning of the patients' implantable cardioverter defibrillator (ICD) by direct effects of radiation on ICD components or cardiac tissue. Currently, the effect of STAR on ICD functioning remains unknown. METHODS: A retrospective pre-post multicenter study evaluating ICD functioning in the 12-month before and after STAR was performed. Patients with (non)ischemic cardiomyopathies with therapy-refractory VT and ICD who underwent STAR were included and the occurrence of ICD-related adverse events was collected. Evaluated ICD parameters included sensing, capture threshold and impedance. A linear mixed-effects model was used to investigate the association between STAR, radiotherapy dose and changes in lead parameters over time. RESULTS: In total, 43 patients (88% male) were included in this study. All patients had an ICD with an additional right atrial lead in 34 (79%) and a ventricular lead in 17 (40%) patients. Median ICD-generator dose was 0.1 Gy and lead tip dose ranged from 0-32 Gy. In one patient (2%), a reset occurred during treatment, but otherwise, STAR and radiotherapy dose were not associated with clinically relevant alterations in ICD leads parameters. CONCLUSIONS: STAR treatment did not result in major ICD malfunction. Only one radiotherapy related adverse event occurred during the study follow-up without patient harm. No clinically relevant alterations in ICD functioning were observed after STAR in any of the leads. With the reported doses STAR appears to be safe.


Subject(s)
Defibrillators, Implantable , Myocardial Ischemia , Tachycardia, Ventricular , Humans , Male , Female , Defibrillators, Implantable/adverse effects , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/therapy , Retrospective Studies , Arrhythmias, Cardiac/etiology , Myocardial Ischemia/etiology , Treatment Outcome
2.
Open Heart ; 8(2)2021 11.
Article in English | MEDLINE | ID: mdl-34815300

ABSTRACT

BACKGROUND: Options for patients with ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or catheter ablation remain limited. Stereotactic radiotherapy has been described as a novel treatment option. METHODS: Seven patients with recurrent refractory VT, deemed high risk for either first time or redo invasive catheter ablation, were treated across three UK centres with non-invasive cardiac stereotactic ablative radiotherapy (SABR). Prior catheter ablation data and non-invasive mapping were combined with cross-sectional imaging to generate radiotherapy plans with aim to deliver a single 25 Gy treatment. Shared planning and treatment guidelines and prospective peer review were used. RESULTS: Acute suppression of VT was seen in all seven patients. For five patients with at least 6 months follow-up, overall reduction in VT burden was 85%. No high-grade radiotherapy treatment-related side effects were documented. Three deaths (two early, one late) occurred due to heart failure. CONCLUSIONS: Cardiac SABR showed reasonable VT suppression in a high-risk population where conventional treatment had failed.


Subject(s)
Catheter Ablation/methods , Heart Rate/physiology , Tachycardia, Ventricular/surgery , Aged , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Retrospective Studies , Risk Factors , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/physiopathology , Treatment Outcome , United Kingdom/epidemiology
3.
Br J Radiol ; 89(1059): 20150796, 2016.
Article in English | MEDLINE | ID: mdl-26756812

ABSTRACT

OBJECTIVE: This article presents a set of dosimetric measurements describing the properties of brass mesh (Whiting and Davis, Attleboro Falls, MA) under megavoltage photon irradiation conditions, with particular relevance to its use in breast radiotherapy. METHODS: The effectiveness of brass mesh as a bolus material was investigated using 6-, 15- and 6-MV flattening filter-free photon beams. The effect on dose build-up at the entrance surface, build-down at the beam-exit surface, dose with surface entrance obliquity, beam profiles, penumbra and percentage depth doses were investigated. RESULTS: One layer of the brass mesh produces a build-up effect equivalent to 1.1 mm of water at 6 MV and 1.9 mm at 15 MV. The brass generates a backscattered component of dose, if the photon beam exits through it. Percentage depth-dose curves are largely unaffected by the mesh and are shown to be equivalent to plain-field data. Beam penumbra and profiles are unchanged by the brass except within the first millimetre (mm) of phantom, where a periodic pattern of dose enhancement is seen. CONCLUSION: The data presented demonstrate that one layer of brass mesh provides a similar dose build-up effect equivalent to only a few millimetres of water. However, backscatter from the high atomic number (Z) mesh, at the beam exit, contributes appreciably to the overall dose surface enhancement. This dosimetric consequence cannot be neglected and indeed should be considered and accounted for, when determining the bolus effect of the brass mesh in the case of tangential breast irradiation. Advance in knowledge: This article provides dosimetric data necessary for the introduction of brass mesh bolus into the clinical setting for external-beam breast radiotherapy.


Subject(s)
Copper , Radiotherapy Planning, Computer-Assisted , Surgical Mesh , Zinc , Humans , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Photons , Radiotherapy Dosage
4.
Med Dosim ; 40(1): 58-63, 2015.
Article in English | MEDLINE | ID: mdl-25454113

ABSTRACT

Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (Sc) and total scatter (Scp) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (Sp) data. The similarities and differences between Sp of flattened and FFF beams are described. Sc and Scp data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10MV and Elekta 6MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam Sp and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40cm(2). For the FFF beams, Sp was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14cm(2). Outside this range, the differences were much greater, reaching - 3.2%, - 4.5%, and - 4.3% for the fields of 40 × 40cm(2) for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam Sp increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis.


Subject(s)
Filtration/instrumentation , Photons/therapeutic use , Radiometry/methods , Radiotherapy, High-Energy/instrumentation , Scattering, Radiation , Equipment Design , Equipment Failure Analysis , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL