Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724910

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Acetates , Antioxidants , Brassica napus , Cyclopentanes , Gibberellins , Oxylipins , Plant Growth Regulators , Soil , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Brassica napus/growth & development , Brassica napus/drug effects , Brassica napus/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology , Antioxidants/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Acetates/pharmacology , Soil/chemistry , Chlorophyll/metabolism , Salt Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Nutrients/metabolism
2.
Sci Rep ; 14(1): 11042, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745058

Nickel (Ni) is a heavy metal that adversely affects the growth of different crops by inducing oxidative stress and nutrient imbalance. The role of rhizobacteria (RB) is vital to resolve this issue. They can promote root growth and facilitate the uptake of water and nutrients, resulting in better crop growth. On the other hand, γ-aminobutyric acid (GABA) can maintain the osmotic balance and scavenge the reactive oxygen species under stress conditions. However, the combined effect of GABA and RB has not been thoroughly explored to alleviate Ni toxicity, especially in fenugreek plants. Therefore, in the current pot study, four treatments, i.e., control, A. fabrum (RB), 0.40 mM GABA, and 0.40 mM GABA + RB, were applied under 0Ni and 80 mg Ni/kg soil (80Ni) stress. Results showed that RB + 0.40 mM GABA caused significant improvements in shoot length (~ 13%), shoot fresh weight (~ 47%), shoot dry weight (~ 47%), root length (~ 13%), root fresh weight (~ 60%), and root dry weight (~ 15%) over control under 80 Ni toxicity. A significant enhancement in total chlorophyll (~ 14%), photosynthetic rate (~ 17%), stomatal CO2 concentration (~ 19%), leaves and roots N (~ 10 and ~ 37%), P (~ 18 and ~ 7%) and K (~ 11 and ~ 30%) concentrations, while a decrease in Ni (~ 83 and ~ 49%) concentration also confirmed the effectiveness of RB + 0.40 mM GABA than control under 80Ni. In conclusion, fabrum + 0.40 mM GABA can potentially alleviate the Ni toxicity in fenugreek plants. The implications of these findings extend to agricultural practices, environmental remediation efforts, nutritional security, and ecological impact. Further research is recommended to elucidate the underlying mechanisms, assess long-term effects, and determine the practical feasibility of using A. fabrum + 0.40GABA to improve growth in different crops under Ni toxicity.


Nickel , Trigonella , gamma-Aminobutyric Acid , Nickel/toxicity , gamma-Aminobutyric Acid/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Soil Pollutants/toxicity
4.
BMC Plant Biol ; 24(1): 287, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627664

Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.


Antioxidants , Raphanus , Proline , Cobalt/pharmacology , Salt Stress , Salinity
5.
Sci Rep ; 14(1): 6627, 2024 03 19.
Article En | MEDLINE | ID: mdl-38503869

The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.


Charcoal , Droughts , Quantum Dots , Chlorophyll A , Reactive Oxygen Species , Proline , Zinc
6.
Sci Rep ; 14(1): 6380, 2024 03 16.
Article En | MEDLINE | ID: mdl-38493184

Globally, salinity is an important abiotic stress in agriculture. It induced oxidative stress and nutritional imbalance in plants, resulting in poor crop productivity. Applying silicon (Si) can improve the uptake of macronutrients. On the other hand, using biochar as a soil amendment can also decrease salinity stress due to its high porosity, cation exchange capacity, and water-holding capacity. That's why the current experiment was conducted with novelty to explore the impact of silicon nanoparticle-based biochar (Si-BC) on wheat cultivated on salt-affected soil. There were 3 levels of Si-BC, i.e., control (0), 1% Si-BC1, and 2.5% Si-BC2 applied in 3 replicates under 0 and 200 mM NaCl following a completely randomized design. Results showed that treatment 2.5% Si-BC2 performed significantly better for the enhancement in shoot and root length, shoot and root fresh weight, shoot and root dry weight, number of leaves, number of tillers, number of spikelets, spike length, spike fresh and dry weight compared to control under no stress and salinity stress (200 mM NaCl). A significant enhancement in chlorophyll a (~ 18%), chlorophyll b (~ 22%), total chlorophyll (~ 20%), carotenoid (~ 60%), relative water contents (~ 58%) also signified the effectiveness of treatment 2.5% Si-BC2 than control under 200 mM NaCl. In conclusion, treatment 2.5% Si-BC2 can potentially mitigate the salinity stress in wheat by regulating antioxidants and improving N, K concentration, and gas exchange attributes while decreasing Na and Cl concentration and electrolyte leakage. More investigations at the field level are recommended for the declaration of treatment 2.5% Si-BC2 as the best amendment for alleviating salinity stress in different crops under variable climatic conditions.


Charcoal , Silicon , Antioxidants/pharmacology , Chlorophyll A , Nutrients , Salinity , Salt Stress , Silicon/pharmacology , Sodium Chloride , Soil , Triticum , Water
7.
BMC Plant Biol ; 24(1): 209, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38519997

Salinity stress can significantly delay plant growth. It can disrupt water and nutrient uptake, reducing crop yields and poor plant health. The use of strigolactone can be an effective technique to overcome this issue. Strigolactone enhances plant growth by promoting root development and improvement in physiological attributes. The current pot study used strigolactone to amend chili under no salinity and salinity stress environments. There were four treatments, i.e., 0, 10µM strigolactone, 20µM strigolactone and 30µM strigolactone. All treatments were applied in four replications following a completely randomized design (CRD). Results showed that 20µM strigolactone caused a significant increase in chili plant height (21.07%), dry weight (33.60%), fruit length (19.24%), fruit girth (35.37%), and fruit yield (60.74%) compared to control under salinity stress. Significant enhancement in chili chlorophyll a (18.65%), chlorophyll b (43.52%), and total chlorophyll (25.09%) under salinity stress validated the effectiveness of 20µM strigolactone application as treatment over control. Furthermore, improvement in nitrogen, phosphorus, and potassium concentration in leaves confirmed the efficient functioning of 20µM strigolactone compared to other concentrations under salinity stress. The study concluded that 20µM strigolactone is recommended for mitigating salinity stress in chili plants. Growers are advised to apply 20µM strigolactone to enhance their chili production under salinity stress.


Capsicum , Heterocyclic Compounds, 3-Ring , Camphor , Chlorophyll A , Lactones , Menthol , Salinity , Salt Stress
8.
Sci Rep ; 14(1): 5126, 2024 03 01.
Article En | MEDLINE | ID: mdl-38429337

The utilization of biochar's as soil amendments for enhancing nutrient retention in subsoils present potential limitations. To address this issue, we conducted a greenhouse experiment to assess the effects of various biochar's derived from animal manures (swine manure, poultry litter, cattle manure) and plant residues (rice straw, soybean straw, corn straw) when applied to surface of an acidic soil. Our study focused on wheat crops under a no-tillage system, with a subsequent evaluation of the residual impacts on soybeans. The experimental design involved the application of biochar's at different rates i.e. 10 and 20 Mg ha-1, followed by the assessment of their influence on NPK levels, pH, and exchangeable Al in stratified soil layers (0-5, 5-10, 10-15, and 15-25 cm). Furthermore, we investigated the interplay between biochar doses and the application of nitrogen (N) in the top 5 cm of soil, specifically examining NO 3 - , NH 4 + , P and K levels. Our findings revealed that in the top 5 cm of soil, biochar doses and N application significantly affected NO 3 - , NH 4 + , P and K concentrations. However, in deeper soil layers, no significant differences were observed among biochar doses with or without N application. Interestingly, K levels were impacted throughout all soil depths, regardless of the presence or absence of N application. Moreover, biochar application up to a 5 cm depth induced favorable changes in soil pH and reduced exchangeable Al. In contrast, deeper layers experienced a decrease in soil pH and an increase in exchangeable Al following biochar treatment. In conclusion, our study demonstrates that biochar's can effectively retain NPK nutrients, enhance soil pH, and decrease exchangeable Al, independent of the type and dosage of application under a no-tillage system. Nonetheless, the efficacy of biochar amendments may vary with soil depth and type of nutrient, warranting careful consideration for maximizing their benefits in sustainable agricultural practices.


Charcoal , Manure , Animals , Cattle , Swine , Charcoal/chemistry , Soil/chemistry , Nutrients , Glycine max
9.
BMC Plant Biol ; 24(1): 139, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413916

Drought stress poses a significant challenge to maize production, leading to substantial harm to crop growth and yield due to the induction of oxidative stress. Deashed biochar (DAB) in combination with carboxymethyl cellulose (CMC) presents an effective approach for addressing this problem. DAB improves soil structure by increasing porosity and water retention and enhancing plant nutrient utilization efficiency. The CMC provides advantages to plants by enhancing soil water retention, improving soil structure, and increasing moisture availability to the plant roots. The present study was conducted to investigate the effects of DAB and CMC amendments on maize under field capacity (70 FC) and drought stress. Six different treatments were implemented in this study, namely 0 DAB + 0CMC, 25 CMC, 0.5 DAB, 0.5 DAB + 25 CMC, 1 DAB, and 1 DAB + 25 CMC, each with six replications, and they were arranged according to a completely randomized design. Results showed that 1 DAB + 25 CMC caused significant enhancement in maize shoot fresh weight (24.53%), shoot dry weight (38.47%), shoot length (32.23%), root fresh weight (19.03%), root dry weight (87.50%) and root length (69.80%) over control under drought stress. A substantial increase in maize chlorophyll a (40.26%), chlorophyll b (26.92%), total chlorophyll (30.56%), photosynthetic rate (21.35%), transpiration rate (32.61%), and stomatal conductance (91.57%) under drought stress showed the efficiency of 1 DAB + 25 CMC treatment compared to the control. The enhancement in N, P, and K concentrations in both the root and shoot validated the effectiveness of the performance of the 1 DAB + 25 CMC treatment when compared to the control group under drought stress. In conclusion, it is recommended that the application of 1 DAB + 25 CMC serves as a beneficial amendment for alleviating drought stress in maize.


Charcoal , Zea mays , Carboxymethylcellulose Sodium/pharmacology , Chlorophyll A , Droughts , Soil/chemistry , Water
10.
BMC Plant Biol ; 24(1): 137, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38408939

The deleterious impact of osmotic stress, induced by water deficit in arid and semi-arid regions, poses a formidable challenge to cotton production. To protect cotton farming in dry areas, it's crucial to create strong plans to increase soil water and reduce stress on plants. The carboxymethyl cellulose (CMC), gibberellic acid (GA3) and biochar (BC) are individually found effective in mitigating osmotic stress. However, combine effect of CMC and GA3 with biochar on drought mitigation is still not studied in depth. The present study was carried out using a combination of GA3 and CMC with BC as amendments on cotton plants subjected to osmotic stress levels of 70 (70 OS) and 40 (40 OS). There were five treatment groups, namely: control (0% CMC-BC and 0% GA3-BC), 0.4%CMC-BC, 0.4%GA3-BC, 0.8%CMC-BC, and 0.8%GA3-BC. Each treatment was replicated five times with a completely randomized design (CRD). The results revealed that 0.8 GA3-BC led to increase in cotton shoot fresh weight (99.95%), shoot dry weight (95.70%), root fresh weight (73.13%), and root dry weight (95.74%) compared to the control group under osmotic stress. There was a significant enhancement in cotton chlorophyll a (23.77%), chlorophyll b (70.44%), and total chlorophyll (35.44%), the photosynthetic rate (90.77%), transpiration rate (174.44%), and internal CO2 concentration (57.99%) compared to the control group under the 40 OS stress. Thus 0.8GA3-BC can be potential amendment for reducing osmotic stress in cotton cultivation, enhancing agricultural resilience and productivity.


Carboxymethylcellulose Sodium , Charcoal , Gibberellins , Gossypium , Chlorophyll A , Osmotic Pressure , Water
11.
BMC Plant Biol ; 24(1): 115, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365582

Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.


Heterocyclic Compounds, 3-Ring , Lactones , Raphanus , Soil Pollutants , Chromium , Chlorophyll A , Ecosystem , Charcoal , Soil/chemistry
12.
BMC Plant Biol ; 24(1): 74, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38279107

Management of nitrogen (N) fertilizer is a critical factor that can improve maize (Zea mays L.) production. On the other hand, high volatilization losses of N also pollute the air. A field experiment was established using a silt clay soil to examine the effect of sulfur-coated urea and sulfur from gypsum on ammonia (NH3) emission, N use efficiency (NUE), and the productivity of maize crop under alkaline calcareous soil. The experimental design was a randomized complete block (RCBD) with seven treatments in three replicates: control with no N, urea150 alone (150 kg N ha-1), urea200 alone (200 kg N ha-1), urea150 + S (60 kg ha-1 S from gypsum), urea200 + S, SCU150 (sulfur-coated urea) and SCU200. The results showed that the urea150 + S and urea200 + S significantly reduced the total NH3 by (58 and 42%) as compared with the sole application urea200. The NH3 emission reduced further in the treatment with SCU150 and SCU200 by 74 and 65%, respectively, compared to the treatment with urea200. The maize plant biomass, grain yield, and total N uptake enhanced by 5-14%, 4-17%, and 7-13, respectively, in the treatments with urea150 + s and urea200 + S, relative to the treatment with urea200 alone. Biomass, grain yield, and total N uptake further increased significantly by 22-30%, 25-28%, and 26-31%, respectively, in the treatments with SCU150 and SCU200, relative to the treatment with urea200 alone. The applications of SCU150 enhanced the nitrogen use efficiency (NUE) by (72%) and SCU200 by (62%) respectively, compared with the sole application of urea200 alone. In conclusion, applying S-coated urea at a lower rate of 150 kg N ha-1 compared with a higher rate of 200 kg N ha-1 may be an effective way to reduce N fertilizer application rate and mitigate NH3 emission, improve NUE, and increase maize yield. More investigations are suggested under different soil textures and climatic conditions to declare S-coated urea at 150 kg N ha-1 as the best application rate for maize to enhance maize growth and yield.


Ammonia , Nitrogen , Ammonia/analysis , Nitrogen/analysis , Agriculture/methods , Zea mays , Volatilization , Fertilizers/analysis , Calcium Sulfate , Soil , Urea , Edible Grain/chemistry , Sulfur
13.
BMC Plant Biol ; 24(1): 35, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38185637

Salinity stress is a prominent environmental factor that presents obstacles to the growth and development of plants. When the soil contains high salt concentrations, the roots face difficulties in absorbing water, resulting in water deficits within the plant tissues. Consequently, plants may experience inhibited growth, decreased development, and a decline in biomass accumulation. The use of nanoparticles has become a popular amendment in recent times for the alleviation of salinity stress. The study investigated the biological approach for the preparation of Se nanoparticles (NP) and their effect on the growth of wheat plants under saline conditions. The leaf extract of lemon (Citrus limon L.) was used for the green synthesis of selenium nanoparticles (Se-NPs). The synthesized NPs were characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) and were applied foliar in the range of 0.01%, 0.05% and 0.1% on wheat plants. Results showed that 0.1% SeNP alone exhibited a significantly higher yield per plant, biomass per plant, 1000 grains weight, chlorophyll a, chlorophyll b and total chlorophyll over the SS (salt stress) control. A significant decline in MDA and H2O2 also validated the effectiveness of 0.1% SeNP over the SS control.


Citrus , Nanoparticles , Selenium , Triticum , Chlorophyll A , Hydrogen Peroxide , Salt Stress , Water
14.
BMC Plant Biol ; 24(1): 36, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38191323

Maize cultivated for dry grain covers approximately 197 million hectares globally, securing its position as the second most widely grown crop worldwide after wheat. Although spermidine and biochar individually showed positive impacts on maize production in existing literature, their combined effects on maize growth, physiology, nutrient uptake remain unclear and require further in-depth investigation. That's why a pot experiment was conducted on maize with spermidine and potassium enriched biochar (KBC) as treatments in Multan, Pakistan, during the year 2022. Four levels of spermidine (0, 0.15, 0.30, and 0.45mM) and two levels of potassium KBC (0 and 0.50%) were applied in completely randomized design (CRD). Results showed that 0.45 mM spermidine under 0.50% KBC caused significant enhancement in maize shoot length (11.30%), shoot fresh weight (25.78%), shoot dry weight (17.45%), root length (27.95%), root fresh weight (26.80%), and root dry weight (20.86%) over control. A significant increase in maize chlorophyll a (50.00%), chlorophyll b (40.40%), total chlorophyll (47.00%), photosynthetic rate (34.91%), transpiration rate (6.51%), and stomatal conductance (15.99%) compared to control under 0.50%KBC validate the potential of 0.45 mM spermidine. An increase in N, P, and K concentration in the root and shoot while decrease in electrolyte leakage and antioxidants also confirmed that the 0.45 mM spermidine performed more effectively with 0.50%KBC. In conclusion, 0.45 mM spermidine with 0.50%KBC is recommended for enhancing maize growth.


Potassium , Zea mays , Chlorophyll A , Spermidine/pharmacology
15.
BMC Plant Biol ; 24(1): 7, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38163887

Heavy metal cadmium (Cd) naturally occurs in soil and is a hazardous trace contaminant for humans, animals, and plants. The main sources of Cd pollution in soil include overuse of phosphatic fertilizers, manure, sewage sludge, and aerial deposition. That's why an experiment was conducted to analyze the effect of Cd toxicity in Capsicum annuum L. by selecting its seven varieties: Hybrid, Desi, Sathra, G-916, BR-763, BG-912, and F1-9226. Cadmium was spiked in soil with four levels, i.e., (0, 3, 4, and 5 mg Cd kg- 1 of soil) for a week for homogeneous dispersion of heavy metal. Chili seeds were sown in compost-filled loamy soil, and 25-day-old seedlings were transplanted into Cd-spiked soil. Cadmium increasing concentration in soil decreased chili growth characteristics, total soluble sugars, total proteins, and amino acids. On the other hand, the activities of antioxidant enzymes were increased with the increasing concentration of Cd in almost all the varieties. Treatment 5 mg Cd/kg application caused - 197.39%, -138.78%, -60.77%, -17.84%, -16.34%, -11.82% and - 10.37% decrease of carotenoids level in chili V2 (Desi) followed by V4 (G-916), V1 (Hy7brid), V7 (F1-9226), V6 (BG-912), V5 (BR-763) and V3 (Sathra) as compared to their controls. The maximum flavonoids among varieties were in V5 (BR-763), followed by V6 (BG-912), V7 (F1-9226), V3 (Sathra) and V1 (Hybrid). Flavonoids content was decreased with - 37.63% (Sathra), -34.78% (Hybrid), -33.85% (G-916), -31.96% (F1-9226), -31.44% (Desi), -30.58% (BR-763), -22.88% (BG-912) as compared to their control at 5 mg Cd/kg soil stress. The maximum decrease in POD, SOD, and CAT was - 31.81%, -25.98%, -16.39% in chili variety V7 (F1-9226) at 5 mg Cd/kg stress compared to its control. At the same time, maximum APX content decrease was - 82.91%, followed by -80.16%, -65.19%, -40.31%, -30.14%, -10.34% and - 6.45% in V4 (G-916), V2 (Desi), V3 (Sathra), V6 (BG-912), V1 (Hybrid), V7 (F1-9226) and V5 (BR-763) at 5 mg Cd/kg treatment as compared to control chili plants. The highest CAT was found in 5 chili varieties except Desi and G-916. Desi and G-916 varieties. V5 (BR-763) and V6 (BG-912) were susceptible, while V1 (Hybrid), V3 (Sathra), and V7 (F1-9226) were with intermediate growth attributes against Cd stress. Our results suggest that Desi and G-916 chili varieties are Cd tolerant and can be grown on a large scale to mitigate Cd stress naturally.


Cadmium , Soil Pollutants , Humans , Animals , Cadmium/metabolism , Antioxidants/metabolism , Carotenoids , Soil/chemistry , Flavonoids , Soil Pollutants/toxicity
16.
Sci Rep ; 14(1): 141, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167554

Soil salinity, the second most prominent cause of land degradation after soil erosion, has posed a persistent challenge to agriculture. Currently, approximately 1 billion hectares of Earth's land surface, equivalent to 7%, are affected by salinity. While biochar has proven effective in mitigating salinity stress, the specific role of deashed biochar in salinity mitigation has not been thoroughly explored. Therefore, this study was conducted to investigate the impact of four levels of deashed biochar (0%, 0.4%, 0.8%, and 1.2%) on the growth and physiological attributes of Fenugreek under both non-saline conditions (2.54 dS/m EC) and salinity stress conditions (5.46 dS/m EC). The results revealed a notable enhancement in various parameters under salinity stress. Compared to the control, the application of 1.20% deashed biochar led to a significant increase in shoot fresh weight (30.82%), root fresh weight (13.06%), shoot dry weight (17.43%), root dry weight (33.44%), shoot length (23.09%), and root length (52.39%) under salinity stress. Furthermore, improvements in internal CO2 concentration (9.91%), stomatal conductance (15.49%), photosynthetic rate (25.50%), and transpiration rate (10.46%) were observed, validating the efficacy of 1.20% deashed biochar in alleviating salinity stress. The study also demonstrated a significant decrease in the activities of oxidative stress markers such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), electrolyte leakage, and malondialdehyde (MDA). Simultaneously, there was an increase in the concentrations of essential nutrients, namely nitrogen (N), phosphorus (P), and potassium (K), in both shoot and root tissues. These findings collectively suggest that deashed biochar, particularly at a concentration of 1.20%, is recommended for achieving enhanced crop production under conditions of salinity stress.


Antioxidants , Trigonella , Antioxidants/metabolism , Trigonella/metabolism , Oxidative Stress , Salt Stress , Salinity
17.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38262953

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Mycorrhizae , Antioxidants , Zea mays , Charcoal , Edetic Acid , Chlorophyll A , Salt Stress , Chlorophyll , Soil
18.
BMC Plant Biol ; 23(1): 629, 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38062351

Chromium (Cr) toxicity significantly threatens sunflower growth and productivity by interfering with enzymatic activity and generating reactive oxygen species (ROS). Zinc quantum dot biochar (ZQDB) and arbuscular mycorrhizal fungi (AMF) have become popular to resolve this issue. AMF can facilitate root growth, while biochar tends to minimize Cr mobility in soil. The current study aimed to explore AMF and ZQDB combined effects on sunflower plants in response to Cr toxicity. Four treatments were applied, i.e. NoAMF + NoZQDB, AMF + 0.40%ZQDB, AMF + 0.80%ZQDB, and AMF + 1.20%ZQDB, under different stress levels of Cr, i.e. no Cr (control), 150 and 200 mg Cr/kg soil. Results showed that AMF + 1.20%ZQDB was the treatment that caused the greatest improvement in plant height, stem diameter, head diameter, number of leaves per plant, achenes per head, 1000 achenes weight, achene yield, biological yield, transpiration rate, stomatal conductance, chlorophyll content and oleic acid, relative to the condition NoAMF + No ZQDB at 200 mg Cr/kg soil. A significant decline in peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) while improvement in ascorbate peroxidase (APx), oil content, and protein content further supported the effectiveness of AMF + 1.20%ZQDB against Cr toxicity. Our results suggest that the treatment AMF + 1.20%ZQDB can efficiently alleviate Cr stress in sunflowers.


Helianthus , Mycorrhizae , Quantum Dots , Mycorrhizae/physiology , Antioxidants/metabolism , Helianthus/metabolism , Chromium/toxicity , Chromium/metabolism , Soil , Plant Roots/metabolism
19.
BMC Plant Biol ; 23(1): 615, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38049735

Osmotic stress is a significant concern in agricultural crop production as it can harm crop growth, development, and productivity. Agriculture crops are particularly vulnerable to osmotic stress due to their reliance on water availability for various physiological processes. Organic amendments like activated carbon biochar and growth hormone gibberellic acid (GA3) can play a vital role. However, the time needed is to modify the established amendment to achieve better results. That's why the current study used potassium-enriched biochar (KBC = 0.75%) with and without GA3 (15 mg/L) as amendments under no osmotic stress and osmotic stress in wheat. Results showed that GA3 + KBC caused significant enhancement in germination (9.44%), shoot length (29.30%), root length (21.85%), shoot fresh weight (13.56%), shoot dry weight (68.38), root fresh weight (32.68%) and root dry weight (28.79%) of wheat over control under osmotic stress (OS). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll, while the decline in electrolyte leakage of wheat, also validated the effectiveness of GA3 + KBC over control in OS. In conclusion, GA3 + KBC is the most effective among all applied treatments for improving wheat growth attributes under no osmotic and osmotic stress. Further research is needed at the field level, focusing on various cereal crops, to establish GA3 + KBC as the optimal treatment for effectively mitigating the impacts of osmotic stress.


Charcoal , Triticum , Potassium , Droughts , Chlorophyll A , Crops, Agricultural
20.
BMC Plant Biol ; 23(1): 658, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38124056

BACKGROUND: The Aizoaceae family's Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides. RESULTS: The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales' 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ. CONCLUSION: The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family's monophyletic origin. This study's highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.


Aizoaceae , Genome, Chloroplast , Humans , Phylogeny , Pakistan , Genomics , Genome, Chloroplast/genetics , Codon
...