Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(3)2024 02 26.
Article in English | MEDLINE | ID: mdl-38540357

ABSTRACT

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Subject(s)
Gene Expression Profiling , Lung , Animals , Humans , Mice , Lung/metabolism , Mammals/genetics , Pericytes , Phenotype , Transcriptome/genetics , Infant, Newborn
2.
Inflamm Regen ; 43(1): 52, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37876024

ABSTRACT

Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.

3.
Front Cell Dev Biol ; 11: 1220002, 2023.
Article in English | MEDLINE | ID: mdl-37701781

ABSTRACT

Fibroblast growth factor (FGF) signaling is necessary for proper lung branching morphogenesis, alveolarization, and vascular development. Dysregulation of FGF activity has been implicated in various lung diseases. Recently, we showed that FGF18 promotes human lung branching morphogenesis by regulating mesenchymal progenitor cells. However, the underlying mechanisms remain unclear. Thus, we aimed to determine the role of FGF18 and its receptors (FGFR) in regulating mesenchymal cell proliferation, migration, and differentiation from pseudoglandular to canalicular stage. We performed siRNA assays to identify the specific FGFR(s) associated with FGF18-induced biological processes. We found that FGF18 increased proliferation and migration in human fetal lung fibroblasts (HFLF) from both stages. FGFR2/FGFR4 played a significant role in pseudoglandular stage. HFLF proliferation, while FGFR3/FGFR4 were involved in canalicular stage. FGF18 enhanced HFLF migration through FGFR2 and FGFR4 in pseudoglandular and canalicular stage, respectively. Finally, we provide evidence that FGF18 treatment leads to reduced expression of myofibroblast markers (ACTA2 and COL1A1) and increased expression of lipofibroblast markers (ADRP and PPARγ) in both stages HFLF. However, the specific FGF18/FGFR complex involved in this process varies depending on the stage. Our findings suggest that in context of human lung development, FGF18 tends to associate with distinct FGFRs to initiate specific biological processes on mesenchymal cells.

4.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066313

ABSTRACT

Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated in utero. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Our results demonstrate differences in the proportion of cell populations and detail changes in gene expression at the time of initiation of histopathological abnormalities. Notably, we identify shifts in the distribution of alveolar epithelial progenitors, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell atlas of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.

5.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L433-L444, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36791060

ABSTRACT

Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human. Therefore, we aimed to determine the role of FGF18 in human lung branching morphogenesis. Human fetal lung explants within the pseudoglandular stage of development were treated with recombinant human FGF18 in air-liquid interface culture. Explants were analyzed grossly to assess differences in branching pattern, as well as at the cellular and molecular levels. FGF18 treatment promoted branching in explant cultures and demonstrated increased epithelial proliferation as well as maintenance of the double positive SOX2/SOX9 distal bud progenitor cells, confirming its role in human lung branching morphogenesis. In addition, FGF18 treated explants displayed increased expression of SOX9, FN1, and COL2A1 within the mesenchyme, all factors that are important to chondrocyte differentiation. In humans, cartilaginous airways extend deep into the lung up to the 12th generation of branching whereas in mouse these are restricted to the trachea and main bronchi. Therefore, our data suggest that FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells.


Subject(s)
Fibroblast Growth Factors , Mesenchymal Stem Cells , Animals , Humans , Mice , Fibroblast Growth Factors/genetics , Lung/metabolism , Morphogenesis/physiology , Organogenesis/genetics
6.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35563656

ABSTRACT

The Hedgehog (HH) signaling pathway plays an essential role in mouse lung development. We hypothesize that the HH pathway is necessary for branching during human lung development and is impaired in pulmonary hypoplasia. Single-cell, bulk RNA-sequencing data, and human fetal lung tissues were analyzed to determine the spatiotemporal localization of HH pathway actors. Distal human lung segments were cultured in an air-liquid interface and treated with an SHH inhibitor (5E1) to determine the effect of HH inhibition on human lung branching, epithelial-mesenchymal markers, and associated signaling pathways in vitro. Our results showed an early and regulated expression of HH pathway components during human lung development. Inhibiting HH signaling caused a reduction in branching during development and dysregulated epithelial (SOX2, SOX9) and mesenchymal (ACTA2) progenitor markers. FGF and Wnt pathways were also disrupted upon HH inhibition. Finally, we demonstrated that HH signaling elements were downregulated in lung tissues of patients with a congenital diaphragmatic hernia (CDH). In this study, we show for the first time that HH signaling inhibition alters important genes and proteins required for proper branching of the human developing lung. Understanding the role of the HH pathway on human lung development could lead to the identification of novel therapeutic targets for childhood pulmonary diseases.


Subject(s)
Hedgehog Proteins , Lung , Signal Transduction , Animals , Child , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Hernias, Diaphragmatic, Congenital/metabolism , Humans , Lung/growth & development , Lung/metabolism , Mice , Morphogenesis , Organogenesis , Wnt Signaling Pathway
7.
Cell Rep ; 39(1): 110608, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385750

ABSTRACT

The lung alveolus is lined with alveolar type 1 (AT1) and type 2 (AT2) epithelial cells. During alveologenesis, increasing demand associated with expanding alveolar numbers is met by proliferating progenitor AT2s (pAT2). Little information exists regarding the identity of this population and their niche microenvironment. We show that during alveologenesis, Hedgehog-responsive PDGFRa(+) progenitors (also known as SCMFs) are a source of secreted trophic molecules that maintain a unique pAT2 population. SCMFs are in turn maintained by TGFß signaling. Compound inactivation of Alk5 TßR2 in SCMFs reduced their numbers and depleted the pAT2 pool without impacting differentiation of daughter cells. In lungs of preterm infants who died with bronchopulmonary dysplasia, PDGFRa is reduced and the number of proliferative AT2s is diminished, indicating that an evolutionarily conserved mechanism governs pAT2 behavior during alveologenesis. SCMFs are a transient cell population, active only during alveologenesis, making them a unique stage-specific niche mesodermal cell type in mammalian organs.


Subject(s)
Hedgehogs , Infant, Premature , Animals , Cell Differentiation/physiology , Epithelial Cells , Fibroblasts , Humans , Infant, Newborn , Lung , Organogenesis , Receptor Protein-Tyrosine Kinases/metabolism , Stem Cells/metabolism
8.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: mdl-34446466

ABSTRACT

RATIONALE: Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. METHODS AND RESULTS: First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. CONCLUSION: We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/pathology , Disease Models, Animal , Hyperoxia/pathology , Interleukin-6/metabolism , Lung , Macrophages/metabolism , Mice
9.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L892-L899, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34469245

ABSTRACT

Down syndrome (DS) is one of the most prevalent chromosomal abnormalities worldwide, affecting 1 in 700 live births. Although multiple organ systems are affected by the chromosomal defects, respiratory failure and lung disease are the leading causes of morbidity and mortality observed in DS. Manifestations of DS in the respiratory system encompass the entire lung starting from the nasopharynx to the trachea/upper airways to the lower airways and alveolar spaces, as well as vascular and lymphatic defects. Most of our knowledge on respiratory illness in persons with DS arises from pediatric studies; however, many of these disorders present early in infancy, supporting developmental mechanisms. In this review, we will focus on the different lung phenotypes in DS, as well as the genetic and molecular pathways that may be contributing to these complications during development.


Subject(s)
Disease Progression , Down Syndrome/genetics , Down Syndrome/metabolism , Lung Diseases/metabolism , Lung/metabolism , Child , Down Syndrome/complications , Humans , Lung Diseases/complications , Lung Diseases/genetics , Phenotype
10.
J Pathol ; 255(1): 41-51, 2021 09.
Article in English | MEDLINE | ID: mdl-34050678

ABSTRACT

Down syndrome (DS), also known as trisomy 21 (T21), is the most common human chromosomal anomaly. Although DS can affect many organ systems, lung and heart disease are the leading causes of death. An abundance of existing data suggests that lung abnormalities originate postnatally in DS. However, a single report of branching insufficiency in DS has inferred a potential prenatal origin. The histology of T21 fetal lungs (n = 15) was assessed by an experienced pathologist. Spatial differences in cellular phenotypes were examined using immunohistochemistry (IHC). Comprehensive gene expression in prenatal T21 lungs (n = 19), and age-matched controls (n = 19), was performed using high-throughput RNA sequencing (RNAseq) and validated by RT-qPCR. Histopathological abnormalities were observed in approximately half of T21 prenatal lung samples analyzed, which included dilated terminal airways/acinar tubules, dilated lymphatics, and arterial wall thickening. IHC for Ki67 revealed significant reductions in epithelial and mesenchymal cell proliferation, predominantly in tissues displaying pathology. IHC demonstrated that airway smooth muscle was reduced and discontinuous in the proximal airway in conjunction with reduced SOX2. RNAseq identified 118 genes significantly dysregulated (FDR < 0.05) in T21 lung when unadjusted and 316 genes when adjusted for age. Ontology analysis showed that IFN pathway genes were appreciably upregulated, whereas complement and coagulation cascades and extracellular matrix pathway genes were downregulated. RT-qPCR confirmed the changes in genes associated with these pathways in prenatal T21 lungs. Our data demonstrate that specific histological, cellular, and molecular abnormalities occur prenatally in different compartments of human T21 lung, which could be representative of premature stage progression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Down Syndrome/pathology , Lung/abnormalities , Fetus , Humans
11.
Front Cell Dev Biol ; 9: 611921, 2021.
Article in English | MEDLINE | ID: mdl-34026749

ABSTRACT

Cystic fibrosis (CF)-related bone disease has emerged as a significant comorbidity of CF and is characterized by decreased bone formation and increased bone resorption. Both osteoblast and osteoclast differentiations are impacted by cystic fibrosis transmembrane conductance regulator (CFTR) mutations. The defect of CFTR chloride channel or the loss of CFTRs ability to interact with other proteins affect several signaling pathways involved in stem cell differentiation and the commitment of these cells toward bone lineages. Specifically, TGF-, nuclear factor-kappa B (NF-B), PI3K/AKT, and MAPK/ERK signaling are disturbed by CFTR mutations, thus perturbing stem cell differentiation. High inflammation in patients changes myeloid lineage secretion, affecting both myeloid and mesenchymal differentiation. In osteoblast, Wnt signaling is impacted, resulting in consequences for both bone formation and resorption. Finally, CFTR could also have a direct role in osteoclasts resorptive function. In this review, we summarize the existing literature on the role of CFTR mutations on the commitment of induced pluripotent stem cells to bone cells.

12.
Front Cell Dev Biol ; 8: 576604, 2020.
Article in English | MEDLINE | ID: mdl-33195211

ABSTRACT

The existence during mouse lung development of an embryonic stage temporally and functionally distinct from the subsequent pseudoglandular stage has been proposed but never demonstrated; while studies in human embryonic lung tissue fail to recapitulate the molecular control of branching found in mice. Lung development in mice starts officially at embryonic day (E) 9.5 when on the ventral side of the primary foregut tube, both the trachea and the two primary lung buds emerge and elongate to form a completely separate structure from the foregut by E10. In the subsequent 6 days, the primary lung buds undergo an intense process of branching to form a ramified tree by E16.5. We used transgenic mice allowing to transiently inhibit endogenous fibroblast growth factor 10 (Fgf10) activity in mutant embryos at E9, E9.5, and E11 upon intraperitoneal exposure to doxycycline and examined the resulting lung phenotype at later developmental stages. We also determined using gene arrays the transcriptomic response of flow cytometry-isolated human alveolar epithelial progenitor cells derived from hESC or hiPSC, grown in vitro for 12 or 24 h, in the presence or absence of recombinant FGF10. Following injection at E9, the corresponding mutant lungs at E18.5 appear almost normal in size and shape but close up examination indicate failure of the right lung to undergo lobar septation. At E9.5, the lungs are slightly hypoplastic but display normal differentiation and functionality. However, at E11, the lungs show impaired branching and are no longer functional. Using gene array data, we report only a partial overlap between human and mouse in the genes previously shown to be regulated by Fgf10 at E12.5. This study supports the existence of an embryonic stage of lung development where Fgf10 signaling does not play a function in the branching process but rather in lobar septation. It also posits that functional comparisons between mouse and human organogenesis must account for these distinct stages.

15.
Eur Respir J ; 55(1)2020 01.
Article in English | MEDLINE | ID: mdl-31619469

ABSTRACT

RATIONALE: The lung mesenchyme gives rise to multiple distinct lineages of cells in the mature respiratory system, including smooth muscle cells of the airway and vasculature. However, a thorough understanding of the specification and mesenchymal cell diversity in the human lung is lacking. METHODS: We completed single-cell RNA sequencing analysis of fetal human lung tissues. Canonical correlation analysis, clustering, cluster marker gene identification and t-distributed stochastic neighbour embedding representation was performed in Seurat. Cell populations were annotated using ToppFun. Immunohistochemistry and in situ hybridisation were used to validate spatiotemporal gene expression patterns for key marker genes. RESULTS: We identified molecularly distinct populations representing "committed" fetal human lung endothelial cells, pericytes and smooth muscle cells. Early endothelial lineages expressed "classic" endothelial cell markers (platelet endothelial cell adhesion molecule/CD31 and claudin 5), while pericytes expressed platelet-derived growth factor receptor-ß, Thy-1 membrane glycoprotein and basement membrane molecules (collagen IV, laminin and proteoglycans). We observed a large population of "nonspecific" human lung mesenchymal progenitor cells characterised by expression of collagen I and multiple elastin fibre genes (ELN, MFAP2 and FBN1). We closely characterised the diversity of mesenchymal lineages defined by α2-smooth muscle actin (ACTA2) expression. Two cell populations, with the highest levels of ACTA2 transcriptional activity, expressed unique sets of markers associated with airway or vascular smooth muscle cells. Spatiotemporal analysis of these marker genes confirmed early and persistent spatial specification of airway (HHIP, MYLK and IGF1) and vascular (NTRK3 and MEF2C) smooth muscle cells in the developing human lung. CONCLUSION: Our data suggest that specification of distinct airway and vascular smooth muscle cell phenotypes is established early in development and can be identified using the markers we provide.


Subject(s)
Endothelial Cells , Mesenchymal Stem Cells , Cell Differentiation , Cell Lineage , Humans , Lung , Myocytes, Smooth Muscle
16.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L347-L360, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31268347

ABSTRACT

Systems biology uses computational approaches to integrate diverse data types to understand cell and organ behavior. Data derived from complementary technologies, for example transcriptomic and proteomic analyses, are providing new insights into development and disease. We compared mRNA and protein profiles from purified endothelial, epithelial, immune, and mesenchymal cells from normal human infant lung tissue. Signatures for each cell type were identified and compared at both mRNA and protein levels. Cell-specific biological processes and pathways were predicted by analysis of concordant and discordant RNA-protein pairs. Cell clustering and gene set enrichment comparisons identified shared versus unique processes associated with transcriptomic and/or proteomic data. Clear cell-cell correlations between mRNA and protein data were obtained from each cell type. Approximately 40% of RNA-protein pairs were coherently expressed. While the correlation between RNA and their protein products was relatively low (Spearman rank coefficient rs ~0.4), cell-specific signature genes involved in functional processes characteristic of each cell type were more highly correlated with their protein products. Consistency of cell-specific RNA-protein signatures indicated an essential framework for the function of each cell type. Visualization and reutilization of the protein and RNA profiles are supported by a new web application, "LungProteomics," which is freely accessible to the public.


Subject(s)
Lung/metabolism , Proteome/metabolism , Proteomics , Transcriptome/physiology , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling/methods , Humans , Infant , Lung/growth & development , Proteomics/methods , RNA, Messenger/genetics
17.
Front Genet ; 10: 170, 2019.
Article in English | MEDLINE | ID: mdl-30930931

ABSTRACT

Fibroblast growth factor 10 (FGF10) plays an important role in mouse lung development, injury, and repair. It is considered the main morphogen driving lung branching morphogenesis in rodents. While many studies have found FGF10 SNPs associated with COPD and branch variants in COPD smokers, there is no evidence of a causative role for FGF10 or these SNPs in human lung development and pediatric lung diseases. We and others have shown divergent roles for FGF10 in mouse lung development and early human lung development. Herein, we only review the existing literature on FGF signaling in human lung development and pediatric human lung diseases, comparing what is known in mouse lung to that in human lung.

18.
J Pathol ; 247(2): 254-265, 2019 02.
Article in English | MEDLINE | ID: mdl-30357827

ABSTRACT

Fibroblast growth factor (FGF) signaling plays an important role in lung organogenesis. Over recent decades, FGF signaling in lung development has been extensively studied in animal models. However, little is known about the expression, localization, and functional roles of FGF ligands during human fetal lung development. Therefore, we aimed to determine the expression and function of several FGF ligands and receptors in human lung development. Using in situ hybridization (ISH) and RNA sequencing, we assessed their expression and distribution in native human fetal lung. Human fetal lung explants were treated with recombinant FGF7, FGF9, or FGF10 in air-liquid interface culture. Explants were analyzed grossly to observe differences in branching pattern as well as at the cellular and molecular level. ISH demonstrated that FGF7 is expressed in both the epithelium and mesenchyme; FGF9 is mainly localized in the distal epithelium, whereas FGF10 demonstrated diffuse expression throughout the parenchyma, with some expression in the smooth muscle cells (SMCs). FGFR2 expression was high in both proximal and distal epithelial cells as well as the SMCs. FGFR3 was expressed mostly in the epithelial cells, with lower expression in the mesenchyme, while FGFR4 was highly expressed throughout the mesenchyme and in the distal epithelium. Using recombinant FGFs, we demonstrated that FGF7 and FGF9 had similar effects on human fetal lung as on mouse fetal lung; however, FGF10 caused the human explants to expand and form cysts as opposed to inducing epithelial branching as seen in the mouse. In conjunction with decreased branching, treatment with recombinant FGF7, FGF9, and FGF10 also resulted in decreased double-positive SOX2/SOX9 progenitor cells, which are exclusively present in the distal epithelial tips in early human fetal lung. Although FGF ligand localization may be somewhat comparable between developing mouse and human lungs, their functional roles may differ substantially. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Fibroblast Growth Factors/metabolism , Fibroblasts/metabolism , Lung/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , Cells, Cultured , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Gestational Age , Humans , Ligands , Lung/embryology , Mice, Inbred C57BL , Morphogenesis , Receptors, Fibroblast Growth Factor/genetics , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , Signal Transduction , Species Specificity , Tissue Culture Techniques
19.
Cell Stem Cell ; 23(4): 516-529.e5, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30244870

ABSTRACT

Pluripotent stem cells (PSCs) could provide a powerful system to model development of the human esophagus, whose distinct tissue organization compared to rodent esophagus suggests that developmental mechanisms may not be conserved between species. We therefore established an efficient protocol for generating esophageal progenitor cells (EPCs) from human PSCs. We found that inhibition of TGF-ß and BMP signaling is required for sequential specification of EPCs, which can be further purified using cell-surface markers. These EPCs resemble their human fetal counterparts and can recapitulate normal development of esophageal stratified squamous epithelium during in vitro 3D cultures and in vivo. Importantly, combining hPSC differentiation strategies with mouse genetics elucidated a critical role for Notch signaling in the formation of this epithelium. These studies therefore not only provide an efficient approach to generate EPCs, but also offer a model system to study the regulatory mechanisms underlying development of the human esophagus.


Subject(s)
Esophagus/embryology , Esophagus/metabolism , Imaging, Three-Dimensional , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Esophagus/cytology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD
20.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L144-L149, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28971977

ABSTRACT

Lung morphogenesis relies on a number of important processes, including proximal-distal patterning, cell proliferation, migration and differentiation, as well as epithelial-mesenchymal interactions. In mouse lung development, SOX2+ cells are localized in the proximal epithelium, whereas SOX9+ cells are present in the distal epithelium. We show that, in human lung, expression of these transcription factors differs, in that during the pseudoglandular stage distal epithelial progenitors at the tips coexpress SOX2 and SOX9. This double-positive population was no longer present by the canalicular stages of development. As in mouse, the human proximal epithelial progenitors express solely SOX2 and are surrounded by smooth muscle cells (SMCs) both in the proximal airways and at the epithelial clefts. Upon Ras-related C3 botulinum toxin substrate 1 inhibition, we noted decreased branching, as well as increased SMC differentiation, attenuated peristalsis, and a reduction in the distal double-positive SOX2/SOX9 progenitor cell population. Thus, the presence of SOX2/SOX9 double-positive progenitor cells in the distal epithelium during the pseudoglandular stage of human lung development appears to be critical to proximal-distal patterning and lung branching. Moreover, SMCs promote a SOX2 proximal phenotype and seem to suppress the SOX9+ population.


Subject(s)
Actins/metabolism , Fetus/metabolism , Lung/embryology , Lung/metabolism , Organogenesis , SOX9 Transcription Factor/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Fetus/cytology , Humans , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL