Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Hepatology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954820

ABSTRACT

Alpha-1 antitrypsin deficiency (A1ATD) is a life-threatening condition caused by inheritance of the SERPINA1 'Z' genetic variant (PiZ) driving AAT protein misfolding in hepatocytes. There remain no approved medicines for this disease. Here, we report the results of a small molecule screen performed in patient derived iPSC-hepatocytes that identified Leucine-rich repeat kinase-2 (LRRK2) as a potentially new therapeutic target. Of the commercially available LRRK2 inhibitors tested, we identified CZC-25146, a candidate with favorable pharmacokinetic properties, as being capable of reducing polymer load, increasing normal AAT secretion, and reducing inflammatory cytokines in both cells and PiZ mice. Mechanistically, this effect was achieved through induction of autophagy. Our findings support the use of CZC-25146 and LRRK2 inhibitors in hepatic proteinopathy research and their further investigation as novel therapeutic candidates for A1ATD.

2.
Front Cell Dev Biol ; 11: 1163825, 2023.
Article in English | MEDLINE | ID: mdl-37333983

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney.

3.
J Tissue Eng ; 14: 20417314221139794, 2023.
Article in English | MEDLINE | ID: mdl-36949843

ABSTRACT

Skeletal muscle-derived cells (SMDC) hold tremendous potential for replenishing dysfunctional muscle lost due to disease or trauma. Current therapeutic usage of SMDC relies on harvesting autologous cells from muscle biopsies that are subsequently expanded in vitro before re-implantation into the patient. Heterogeneity can arise from multiple factors including quality of the starting biopsy, age and comorbidity affecting the processed SMDC. Quality attributes intended for clinical use often focus on minimum levels of myogenic cell marker expression. Such approaches do not evaluate the likelihood of SMDC to differentiate and form myofibres when implanted in vivo, which ultimately determines the likelihood of muscle regeneration. Predicting the therapeutic potency of SMDC in vitro prior to implantation is key to developing successful therapeutics in regenerative medicine and reducing implementation costs. Here, we report on the development of a novel SMDC profiling tool to examine populations of cells in vitro derived from different donors. We developed an image-based pipeline to quantify morphological features and extracted cell shape descriptors. We investigated whether these could predict heterogeneity in the formation of myotubes and correlate with the myogenic fusion index. Several of the early cell shape characteristics were found to negatively correlate with the fusion index. These included total area occupied by cells, area shape, bounding box area, compactness, equivalent diameter, minimum ferret diameter, minor axis length and perimeter of SMDC at 24 h after initiating culture. The information extracted with our approach indicates live cell imaging can detect a range of cell phenotypes based on cell-shape alone and preserving cell integrity could be used to predict propensity to form myotubes in vitro and functional tissue in vivo.

4.
Nat Commun ; 14(1): 919, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36808136

ABSTRACT

Cohort-wide sequencing studies have revealed that the largest category of variants is those deemed 'rare', even for the subset located in coding regions (99% of known coding variants are seen in less than 1% of the population. Associative methods give some understanding how rare genetic variants influence disease and organism-level phenotypes. But here we show that additional discoveries can be made through a knowledge-based approach using protein domains and ontologies (function and phenotype) that considers all coding variants regardless of allele frequency. We describe an ab initio, genetics-first method making molecular knowledge-based interpretations for exome-wide non-synonymous variants for phenotypes at the organism and cellular level. By using this reverse approach, we identify plausible genetic causes for developmental disorders that have eluded other established methods and present molecular hypotheses for the causal genetics of 40 phenotypes generated from a direct-to-consumer genotype cohort. This system offers a chance to extract further discovery from genetic data after standard tools have been applied.


Subject(s)
Exome , Genetic Predisposition to Disease , Humans , Phenotype , Genotype , Gene Frequency
5.
Cell Rep ; 40(9): 111281, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044863

ABSTRACT

Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Animals , Cell Differentiation , Humans , Immunity, Innate , Immunotherapy , Lymphocytes , Mice
6.
JHEP Rep ; 4(4): 100446, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35284810

ABSTRACT

Background & Aims: The truncating mutations in tight junction protein 2 (TJP2) cause progressive cholestasis, liver failure, and hepatocyte carcinogenesis. Due to the lack of effective model systems, there are no targeted medications for the liver pathology with TJP2 deficiency. We leveraged the technologies of patient-specific induced pluripotent stem cells (iPSC) and CRISPR genome-editing, and we aim to establish a disease model which recapitulates phenotypes of patients with TJP2 deficiency. Methods: We differentiated iPSC to hepatocyte-like cells (iHep) on the Transwell membrane in a polarized monolayer. Immunofluorescent staining of polarity markers was detected by a confocal microscope. The epithelial barrier function and bile acid transport of bile canaliculi were quantified between the two chambers of Transwell. The morphology of bile canaliculi was measured in iHep cultured in the Matrigel sandwich system using a fluorescent probe and live-confocal imaging. Results: The iHep differentiated from iPSC with TJP2 mutations exhibited intracellular inclusions of disrupted apical membrane structures, distorted canalicular networks, altered distribution of apical and basolateral markers/transporters. The directional bile acid transport of bile canaliculi was compromised in the mutant hepatocytes, resembling the disease phenotypes observed in the liver of patients. Conclusions: Our iPSC-derived in vitro hepatocyte system revealed canalicular membrane disruption in TJP2 deficient hepatocytes and demonstrated the ability to model cholestatic disease with TJP2 deficiency to serve as a platform for further pathophysiologic study and drug discovery. Lay summary: We investigated a genetic liver disease, progressive familial intrahepatic cholestasis (PFIC), which causes severe liver disease in newborns and infants due to a lack of gene called TJP2. By using cutting-edge stem cell technology and genome editing methods, we established a novel disease modeling system in cell culture experiments. Our experiments demonstrated that the lack of TJP2 induced abnormal cell polarity and disrupted bile acid transport. These findings will lead to the subsequent investigation to further understand disease mechanisms and develop an effective treatment.

7.
J Cell Sci ; 135(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34982151

ABSTRACT

Endothelial cells (ECs) are heterogeneous across and within tissues, reflecting distinct, specialised functions. EC heterogeneity has been proposed to underpin EC plasticity independently from vessel microenvironments. However, heterogeneity driven by contact-dependent or short-range cell-cell crosstalk cannot be evaluated with single cell transcriptomic approaches, as spatial and contextual information is lost. Nonetheless, quantification of EC heterogeneity and understanding of its molecular drivers is key to developing novel therapeutics for cancer, cardiovascular diseases and for revascularisation in regenerative medicine. Here, we developed an EC profiling tool (ECPT) to examine individual cells within intact monolayers. We used ECPT to characterise different phenotypes in arterial, venous and microvascular EC populations. In line with other studies, we measured heterogeneity in terms of cell cycle, proliferation, and junction organisation. ECPT uncovered a previously under-appreciated single-cell heterogeneity in NOTCH activation. We correlated cell proliferation with different NOTCH activation states at the single-cell and population levels. The positional and relational information extracted with our novel approach is key to elucidating the molecular mechanisms underpinning EC heterogeneity.


Subject(s)
Endothelial Cells , Transcriptome , Cell Cycle , Cell Proliferation/genetics , Phenotype , Transcriptome/genetics
8.
Stem Cell Reports ; 16(11): 2628-2641, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34678211

ABSTRACT

Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.


Subject(s)
Cell Differentiation/genetics , Endoderm/metabolism , Induced Pluripotent Stem Cells/metabolism , Integrin beta1/genetics , Polymorphism, Single Nucleotide , Cell Adhesion/genetics , Cell Line , Endoderm/cytology , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Profiling/methods , Germ Layers/cytology , Germ Layers/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Phenotype , Proteomics/methods , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
9.
Methods ; 190: 33-43, 2021 06.
Article in English | MEDLINE | ID: mdl-32446959

ABSTRACT

High-throughput imaging methods can be applied to relevant cell culture models, fostering their use in research and translational applications. Improvements in microscopy, computational capabilities and data analysis have enabled high-throughput, high-content approaches from endpoint 2D microscopy images. Nonetheless, trade-offs in acquisition, computation and storage between content and throughput remain, in particular when cells and cell structures are imaged in 3D. Moreover, live 3D phase contrast microscopy images are not often amenable to analysis because of the high level of background noise. Cultures of Human induced pluripotent stem cells (hiPSC) offer unprecedented scope to profile and screen conditions affecting cell fate decisions, self-organisation and early embryonic development. However, quantifying changes in the morphology or function of cell structures derived from hiPSCs over time presents significant challenges. Here, we report a novel method based on the analysis of live phase contrast microscopy images of hiPSC spheroids. We compare self-renewing versus differentiating media conditions, which give rise to spheroids with distinct morphologies; round versus branched, respectively. These cell structures are segmented from 2D projections and analysed based on frame-to-frame variations. Importantly, a tailored convolutional neural network is trained and applied to predict culture conditions from time-frame images. We compare our results with more classic and involved endpoint 3D confocal microscopy and propose that such approaches can complement spheroid-based assays developed for the purpose of screening and profiling. This workflow can be realistically implemented in laboratories using imaging-based high-throughput methods for regenerative medicine and drug discovery.


Subject(s)
High-Throughput Screening Assays , Cell Culture Techniques , Humans , Induced Pluripotent Stem Cells , Microscopy, Confocal , Spheroids, Cellular
10.
Methods Mol Biol ; 2185: 423-445, 2021.
Article in English | MEDLINE | ID: mdl-33165865

ABSTRACT

Increasingly powerful microscopy, liquid handling, and computational techniques have enabled cell imaging in high throughput. Microscopy images are quantified using high-content analysis platforms linking object features to cell behavior. This can be attempted on physiologically relevant cell models, including stem cells and primary cells, in complex environments, and conceivably in the presence of perturbations. Recently, substantial focus has been devoted to cell profiling for cell therapy, assays for drug discovery or biomarker identification for clinical decision-making protocols, bringing this wealth of information into translational applications. In this chapter, we focus on two protocols enabling to (1) benchmark human cells, in particular human endothelial cells as a case study and (2) extract cells from blood for follow-up experiments including image-based drug testing. We also present concepts of high-content imaging and discuss the benefits and challenges, with the aim of enabling readers to tailor existing pipelines and bring such approaches closer to translational research and the clinic.


Subject(s)
Cellular Reprogramming Techniques , Diagnostic Imaging , High-Throughput Screening Assays , Induced Pluripotent Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Translational Research, Biomedical
11.
Nat Mater ; 20(2): 250-259, 2021 02.
Article in English | MEDLINE | ID: mdl-32895507

ABSTRACT

Organoids can shed light on the dynamic interplay between complex tissues and rare cell types within a controlled microenvironment. Here, we develop gut organoid cocultures with type-1 innate lymphoid cells (ILC1) to dissect the impact of their accumulation in inflamed intestines. We demonstrate that murine and human ILC1 secrete transforming growth factor ß1, driving expansion of CD44v6+ epithelial crypts. ILC1 additionally express MMP9 and drive gene signatures indicative of extracellular matrix remodelling. We therefore encapsulated human epithelial-mesenchymal intestinal organoids in MMP-sensitive, synthetic hydrogels designed to form efficient networks at low polymer concentrations. Harnessing this defined system, we demonstrate that ILC1 drive matrix softening and stiffening, which we suggest occurs through balanced matrix degradation and deposition. Our platform enabled us to elucidate previously undescribed interactions between ILC1 and their microenvironment, which suggest that they may exacerbate fibrosis and tumour growth when enriched in inflamed patient tissues.


Subject(s)
Extracellular Matrix/metabolism , Intestinal Mucosa/metabolism , Lymphocytes/metabolism , Organoids/metabolism , Animals , Female , Humans , Intestinal Mucosa/cytology , Lymphocytes/cytology , Matrix Metalloproteinase 9/metabolism , Mice , Organoids/cytology , Transforming Growth Factor beta1/metabolism
12.
PLoS Biol ; 17(10): e3000081, 2019 10.
Article in English | MEDLINE | ID: mdl-31634368

ABSTRACT

In vitro models of postimplantation human development are valuable to the fields of regenerative medicine and developmental biology. Here, we report characterization of a robust in vitro platform that enabled high-content screening of multiple human pluripotent stem cell (hPSC) lines for their ability to undergo peri-gastrulation-like fate patterning upon bone morphogenetic protein 4 (BMP4) treatment of geometrically confined colonies and observed significant heterogeneity in their differentiation propensities along a gastrulation associable and neuralization associable axis. This cell line-associated heterogeneity was found to be attributable to endogenous Nodal expression, with up-regulation of Nodal correlated with expression of a gastrulation-associated gene profile, and Nodal down-regulation correlated with a preneurulation-associated gene profile expression. We harness this knowledge to establish a platform of preneurulation-like fate patterning in geometrically confined hPSC colonies in which fates arise because of a BMPs signalling gradient conveying positional information. Our work identifies a Nodal signalling-dependent switch in peri-gastrulation versus preneurulation-associated fate patterning in hPSC cells, provides a technology to robustly assay hPSC differentiation outcomes, and suggests conserved mechanisms of organized fate specification in differentiating epiblast and ectodermal tissues.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Cell Lineage/drug effects , Gene Expression Regulation, Developmental , Nodal Protein/genetics , Pluripotent Stem Cells/drug effects , Biomechanical Phenomena , Body Patterning/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line , Cell Lineage/genetics , Gastrulation/drug effects , Gastrulation/genetics , Gene Expression Profiling , Genetic Heterogeneity , High-Throughput Screening Assays , Humans , Models, Biological , Neurogenesis/drug effects , Neurogenesis/genetics , Nodal Protein/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction , Surface Properties
13.
Front Mol Neurosci ; 12: 139, 2019.
Article in English | MEDLINE | ID: mdl-31293383

ABSTRACT

Neural crest cells arise in the embryo from the neural plate border and migrate throughout the body, giving rise to many different tissue types such as bones and cartilage of the face, smooth muscles, neurons, and melanocytes. While studied extensively in animal models, neural crest development and disease have been poorly described in humans due to the challenges in accessing embryonic tissues. In recent years, patient-derived human induced pluripotent stem cells (hiPSCs) have become easier to generate, and several streamlined protocols have enabled robust differentiation of hiPSCs to the neural crest lineage. Thus, a unique opportunity is offered for modeling neurocristopathies using patient specific stem cell lines. In this work, we make use of hiPSCs derived from patients affected by the Bardet-Biedl Syndrome (BBS) ciliopathy. BBS patients often exhibit subclinical craniofacial dysmorphisms that are likely to be associated with the neural crest-derived facial skeleton. We focus on hiPSCs carrying variants in the BBS10 gene, which encodes a protein forming part of a chaperonin-like complex associated with the cilium. Here, we establish a pipeline for profiling hiPSCs during differentiation toward the neural crest stem cell fate. This can be used to characterize the differentiation properties of the neural crest-like cells. Two different BBS10 mutant lines showed a reduction in expression of the characteristic neural crest gene expression profile. Further analysis of both BBS10 mutant lines highlighted the inability of these mutant lines to differentiate toward a neural crest fate, which was also characterized by a decreased WNT and BMP response. Altogether, our study suggests a requirement for wild-type BBS10 in human neural crest development. In the long term, approaches such as the one we describe will allow direct comparison of disease-specific cell lines. This will provide valuable insights into the relationships between genetic background and heterogeneity in cellular models. The possibility of integrating laboratory data with clinical phenotypes will move us toward precision medicine approaches.

15.
Cell Rep ; 26(8): 2078-2087.e3, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30784590

ABSTRACT

Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior.


Subject(s)
Biological Variation, Population , Induced Pluripotent Stem Cells/metabolism , Polymorphism, Single Nucleotide , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Mice , Phenotype , Transcriptome
16.
SLAS Discov ; 24(3): 264-273, 2019 03.
Article in English | MEDLINE | ID: mdl-30682324

ABSTRACT

Endothelial cells (ECs) are widely heterogeneous at the cell level and serve different functions at the vessel and tissue levels. EC-forming colonies derived from induced pluripotent stem cells (iPSC-ECFCs) alongside models such as primary human umbilical vein ECs (HUVECs) are slowly becoming available for research with future applications in cell therapies, disease modeling, and drug discovery. We and others previously described high-content analysis approaches capturing unbiased morphology-based measurements coupled with immunofluorescence and used these for multidimensional reduction and population analysis. Here, we report a tailored workflow to characterize ECs. We acquire images at high resolution with high-magnification water-immersion objectives with Hoechst, vascular endothelial cadherin (VEC), and activated NOTCH staining. We hypothesize that via these key markers alone we would be able to distinguish and assess different EC populations. We used cell population software analysis to phenotype HUVECs and iPSC-ECFCs in the absence or presence of vascular endothelial growth factor (VEGF). To our knowledge, this study presents the first parallel quantitative high-content multiparametric profiling of EC models. Importantly, it highlights a simple strategy to benchmark ECs in different conditions and develop new approaches for biological research and translational applications for regenerative medicine.


Subject(s)
Endothelium, Vascular/cytology , Biomarkers/metabolism , Cadherins/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Receptors, Notch/metabolism , Vascular Endothelial Growth Factor A/pharmacology
17.
Stem Cell Reports ; 10(3): 693-702, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29478892

ABSTRACT

Use of hepatocytes derived from induced pluripotent stem cells (i-Heps) is limited by their functional differences in comparison with primary cells. Extracellular niche factors likely play a critical role in bridging this gap. Using image-based characterization (high content analysis; HCA) of freshly isolated hepatocytes from 17 human donors, we devised and validated an algorithm (Hepatocyte Likeness Index; HLI) for comparing the hepatic properties of cells against a physiological gold standard. The HLI was then applied in a targeted screen of extracellular niche factors to identify substrates driving i-Heps closer to the standard. Laminin 411, the top hit, was validated in two additional induced pluripotent stem cell (iPSC) lines, primary tissue, and an in vitro model of α1-antitrypsin deficiency. Cumulatively, these data provide a reference method to control and screen for i-Hep differentiation, identify Laminin 411 as a key niche protein, and underscore the importance of combining substrates, soluble factors, and HCA when developing iPSC applications.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Laminin/metabolism , Adolescent , Adult , Cell Differentiation/physiology , Female , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , alpha 1-Antitrypsin/metabolism
19.
Nature ; 546(7658): 370-375, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28489815

ABSTRACT

Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.


Subject(s)
Genetic Variation/genetics , Induced Pluripotent Stem Cells/metabolism , Cells, Cultured , Cellular Reprogramming/genetics , DNA Copy Number Variations/genetics , Gene Expression Regulation/genetics , Genotype , Humans , Organ Specificity , Phenotype , Quality Control , Quantitative Trait Loci/genetics , Transcriptome/genetics
20.
J Biomol Screen ; 21(9): 887-96, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27256155

ABSTRACT

Most image analysis pipelines rely on multiple channels per image with subcellular reference points for cell segmentation. Single-channel phase-contrast images are often problematic, especially for cells with unfavorable morphology, such as induced pluripotent stem cells (iPSCs). Live imaging poses a further challenge, because of the introduction of the dimension of time. Evaluations cannot be easily integrated with other biological data sets including analysis of endpoint images. Here, we present a workflow that incorporates a novel CellProfiler-based image analysis pipeline enabling segmentation of single-channel images with a robust R-based software solution to reduce the dimension of time to a single data point. These two packages combined allow robust segmentation of iPSCs solely on phase-contrast single-channel images and enable live imaging data to be easily integrated to endpoint data sets while retaining the dynamics of cellular responses. The described workflow facilitates characterization of the response of live-imaged iPSCs to external stimuli and definition of cell line-specific, phenotypic signatures. We present an efficient tool set for automated high-content analysis suitable for cells with challenging morphology. This approach has potentially widespread applications for human pluripotent stem cells and other cell types.


Subject(s)
Cell Tracking/methods , Induced Pluripotent Stem Cells/cytology , Microscopy, Fluorescence/methods , Molecular Imaging/methods , Humans , Image Processing, Computer-Assisted , Software
SELECTION OF CITATIONS
SEARCH DETAIL