Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nature ; 591(7851): 677-681, 2021 03.
Article in English | MEDLINE | ID: mdl-33658720

ABSTRACT

The human glycine transporter 1 (GlyT1) regulates glycine-mediated neuronal excitation and inhibition through the sodium- and chloride-dependent reuptake of glycine1-3. Inhibition of GlyT1 prolongs neurotransmitter signalling, and has long been a key strategy in the development of therapies for a broad range of disorders of the central nervous system, including schizophrenia and cognitive impairments4. Here, using a synthetic single-domain antibody (sybody) and serial synchrotron crystallography, we have determined the structure of GlyT1 in complex with a benzoylpiperazine chemotype inhibitor at 3.4 Å resolution. We find that the inhibitor locks GlyT1 in an inward-open conformation and binds at the intracellular gate of the release pathway, overlapping with the glycine-release site. The inhibitor is likely to reach GlyT1 from the cytoplasmic leaflet of the plasma membrane. Our results define the mechanism of inhibition and enable the rational design of new, clinically efficacious GlyT1 inhibitors.


Subject(s)
Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine/metabolism , Binding Sites , Biological Transport/drug effects , Crystallography , Humans , Models, Molecular , Piperazines/chemistry , Piperazines/pharmacology , Protein Binding , Protein Conformation , Protein Stability , Single-Domain Antibodies , Sulfones/chemistry , Sulfones/pharmacology , Synchrotrons
2.
Nat Protoc ; 15(5): 1707-1741, 2020 05.
Article in English | MEDLINE | ID: mdl-32269381

ABSTRACT

Here, we provide a protocol to generate synthetic nanobodies, known as sybodies, against any purified protein or protein complex within a 3-week period. Unlike methods that require animals for antibody generation, sybody selections are carried out entirely in vitro under controlled experimental conditions. This is particularly relevant for the generation of conformation-specific binders against labile membrane proteins or protein complexes and allows selections in the presence of non-covalent ligands. Sybodies are especially suited for cases where binder generation via immune libraries fails due to high sequence conservation, toxicity or insufficient stability of the target protein. The procedure entails a single round of ribosome display using the sybody libraries encoded by mRNA, followed by two rounds of phage display and binder identification by ELISA. The protocol is optimized to avoid undesired reduction in binder diversity and enrichment of non-specific binders to ensure the best possible selection outcome. Using the efficient fragment exchange (FX) cloning method, the sybody sequences are transferred from the phagemid to different expression vectors without the need to amplify them by PCR, which avoids unintentional shuffling of complementary determining regions. Using quantitative PCR (qPCR), the efficiency of each selection round is monitored to provide immediate feedback and guide troubleshooting. Our protocol can be carried out by any trained biochemist or molecular biologist using commercially available reagents and typically gives rise to 10-30 unique sybodies exhibiting binding affinities in the range of 500 pM-500 nM.


Subject(s)
Chemistry Techniques, Synthetic/methods , Single-Domain Antibodies/chemistry , Bacteriophages/chemistry , Ribosomes/chemistry
3.
Methods Mol Biol ; 2127: 151-165, 2020.
Article in English | MEDLINE | ID: mdl-32112321

ABSTRACT

The selective immobilization of proteins represents an essential step in the selection of binding proteins such as antibodies. The immobilization strategy determines how the target protein is presented to the binders and thereby directly affects the experimental outcome. This poses specific challenges for membrane proteins due to their inherent lack of stability and limited exposed hydrophilic surfaces. Here we detail methodologies for the selective immobilization of membrane proteins based on the strong biotin-avidin interaction and with a specific focus on its application for the selection of nanobodies and sybodies. We discuss the challenges in generating and benefits of obtaining an equimolar biotin to target-protein ratio.


Subject(s)
Avidin/metabolism , Biotin/metabolism , Biotinylation/methods , Membrane Proteins/metabolism , Single-Domain Antibodies/isolation & purification , Amino Acid Sequence , Avidin/chemistry , Biotin/chemistry , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Cell Surface Display Techniques/methods , Cloning, Molecular/methods , Escherichia coli , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Klebsiella pneumoniae , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Streptavidin/chemistry , Streptavidin/metabolism
4.
Methods Mol Biol ; 2127: 185-190, 2020.
Article in English | MEDLINE | ID: mdl-32112323

ABSTRACT

Over the last decades, the use of heavy-chain-only antibodies has received growing attention in academia and industry as research and diagnostic tools as well as therapeutics. Their generation has improved with the help of innovative new methods such as the sybody technology; however, identifying conformation-selective compounds against membrane proteins remains a major challenge. In this chapter, we apply a thermal shift scintillation proximity assay (SPA-TS) to identify sybodies from an in vitro display campaign with the ability to selectively stabilize the inhibitor-bound conformation of the human solute carrier (SLC) family transporter SC6A9 (GlyT1). Using detergent-purified GlyT1 protein and a tritium-labeled glycine uptake inhibitor small molecule, we find sybody candidates that increase the apparent melting temperature in SPA-TS by several degrees. The thermal shift stabilizes the GlyT1-inhibitor complex and qualifies the sybodies for structural studies and inhibitor-selective small molecule screening assays. The SPA-TS assay in its current form is adaptable to any antibody discovery campaign for membrane proteins and permits the generation of highly valuable tools in most stages of drug discovery and development.


Subject(s)
Biological Assay/methods , Immunoglobulin Heavy Chains/isolation & purification , Membrane Proteins/chemistry , Membrane Proteins/immunology , Animals , Antibody Specificity , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine Plasma Membrane Transport Proteins/immunology , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/metabolism , Kinetics , Membrane Proteins/metabolism , Protein Binding , Protein Conformation , Substrate Specificity , Temperature , Thermodynamics
5.
Cell ; 178(5): 1222-1230.e10, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442409

ABSTRACT

The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.1 Å resolution. The structure shows the ligand Cmp2105 bound to an intracellular allosteric binding pocket. A sulfonamide group, characteristic for various chemokine receptor ligands, binds to a patch of conserved residues in the Gi protein binding region between transmembrane helix 7 and helix 8. We demonstrate how structural data can be used in combination with a compound repository and automated thermal stability screening to identify and modulate allosteric chemokine receptor antagonists. We detect both novel (CS-1 and CS-2) and clinically relevant (CXCR1-CXCR2 phase-II antagonist Navarixin) CCR7 modulators with implications for multi-target strategies against cancer.


Subject(s)
Ligands , Receptors, CCR7/metabolism , Allosteric Regulation , Binding Sites , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Neuraminidase/genetics , Neuraminidase/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, CCR2/chemistry , Receptors, CCR2/metabolism , Receptors, CCR7/antagonists & inhibitors , Receptors, CCR7/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification
6.
Elife ; 82019 06 28.
Article in English | MEDLINE | ID: mdl-31251171

ABSTRACT

One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gß subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gß as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.


Subject(s)
GTP-Binding Protein alpha Subunits/ultrastructure , GTP-Binding Protein beta Subunits/ultrastructure , GTP-Binding Protein gamma Subunits/ultrastructure , Rhodopsin/ultrastructure , Animals , Cattle , Cryoelectron Microscopy , GTP-Binding Protein beta Subunits/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Rhodopsin/metabolism
7.
Nat Commun ; 9(1): 3712, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213947

ABSTRACT

Single-particle cryo-electron microscopy (cryo-EM) has recently enabled high-resolution structure determination of numerous biological macromolecular complexes. Despite this progress, the application of high-resolution cryo-EM to G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins remains challenging, owning to both the relative small size and the limited stability of these assemblies. Here we describe the development of antibody fragments that bind and stabilize GPCR-G protein complexes for the application of high-resolution cryo-EM. One antibody in particular, mAb16, stabilizes GPCR/G-protein complexes by recognizing an interface between Gα and Gßγ subunits in the heterotrimer, and confers resistance to GTPγS-triggered dissociation. The unique recognition mode of this antibody makes it possible to transfer its binding and stabilizing effect to other G-protein subtypes through minimal protein engineering. This antibody fragment is thus a broadly applicable tool for structural studies of GPCR/G-protein complexes.


Subject(s)
GTP-Binding Proteins/chemistry , Immunoglobulin Fragments/chemistry , Receptors, G-Protein-Coupled/chemistry , Antibodies, Monoclonal/chemistry , Binding Sites , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Macromolecular Substances/chemistry , Nucleotides/chemistry , Protein Binding , Protein Domains , Protein Engineering/methods , Protein Structure, Secondary , Rhodopsin/chemistry , Signal Transduction
8.
Nature ; 558(7711): 547-552, 2018 06.
Article in English | MEDLINE | ID: mdl-29899455

ABSTRACT

The µ-opioid receptor (µOR) is a G-protein-coupled receptor (GPCR) and the target of most clinically and recreationally used opioids. The induced positive effects of analgesia and euphoria are mediated by µOR signalling through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Here we present the 3.5 Å resolution cryo-electron microscopy structure of the µOR bound to the agonist peptide DAMGO and nucleotide-free Gi. DAMGO occupies the morphinan ligand pocket, with its N terminus interacting with conserved receptor residues and its C terminus engaging regions important for opioid-ligand selectivity. Comparison of the µOR-Gi complex to previously determined structures of other GPCRs bound to the stimulatory G protein Gs reveals differences in the position of transmembrane receptor helix 6 and in the interactions between the G protein α-subunit and the receptor core. Together, these results shed light on the structural features that contribute to the Gi protein-coupling specificity of the µOR.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/ultrastructure , Animals , Binding Sites , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Female , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Ligands , Mice , Mice, Inbred BALB C , Molecular Dynamics Simulation , Morphinans/chemistry , Morphinans/metabolism , Protein Stability/drug effects , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Substrate Specificity
9.
Elife ; 72018 05 24.
Article in English | MEDLINE | ID: mdl-29792401

ABSTRACT

Mechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies. To target the limited hydrophilic surfaces of membrane proteins, we designed three sybody libraries that exhibit different shapes and moderate hydrophobicity of the randomized surface. A robust binder selection cascade combining ribosome and phage display enabled the generation of conformation-selective, high affinity sybodies against an ABC transporter and two previously intractable human SLC transporters, GlyT1 and ENT1. The platform does not require access to animal facilities and builds exclusively on commercially available reagents, thus enabling every lab to rapidly generate binders against challenging membrane proteins.


Subject(s)
ATP-Binding Cassette Transporters/isolation & purification , Equilibrative Nucleoside Transporter 1/isolation & purification , Glycine Plasma Membrane Transport Proteins/isolation & purification , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/immunology , ATP-Binding Cassette Transporters/metabolism , Cell Surface Display Techniques , Equilibrative Nucleoside Transporter 1/chemistry , Equilibrative Nucleoside Transporter 1/immunology , Equilibrative Nucleoside Transporter 1/metabolism , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine Plasma Membrane Transport Proteins/immunology , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Protein Binding , Protein Conformation , Protein Stability , Single-Domain Antibodies/genetics
10.
Proc Natl Acad Sci U S A ; 115(14): 3640-3645, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29555765

ABSTRACT

In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2.4 Å resolution using one of the stabilizing hits (S-RS1). Chemical modification of S-RS1 and further structural analysis revealed the core binding motif of this class of rhodopsin stabilizers bound at the orthosteric binding site. Furthermore, previously unobserved conformational changes are visible at the intradiscal side of the seven-transmembrane helix bundle. A hallmark of this conformation is an open channel connecting the ligand binding site with the membrane and the intradiscal lumen of rod outer segments. Sufficient in size, the passage permits the exchange of hydrophobic ligands such as retinal. The results broaden our understanding of rhodopsin's conformational flexibility and enable therapeutic drug intervention against rhodopsin-related retinitis pigmentosa.


Subject(s)
Drug Design , Pharmaceutical Preparations/administration & dosage , Protein Conformation/drug effects , Protein Stability/drug effects , Receptors, G-Protein-Coupled/chemistry , Rhodopsin/chemistry , Animals , Cells, Cultured , Humans , Ligands , Mice , Models, Molecular , Pharmaceutical Preparations/metabolism , Receptors, G-Protein-Coupled/metabolism , Rhodopsin/metabolism
11.
Nat Struct Mol Biol ; 22(9): 686-694, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26258638

ABSTRACT

We present comprehensive maps at single-amino acid resolution of the residues stabilizing the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands ß1-ß3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands ß4-ß6. Key residues in this cluster are Y320, which is crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the interdomain interface and release of GDP.


Subject(s)
Amino Acids/metabolism , DNA/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Rhodopsin/metabolism , Amino Acids/genetics , DNA Mutational Analysis , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability
12.
Biochim Biophys Acta ; 1848(5): 1224-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25725488

ABSTRACT

Membrane proteins (MPs) are prevalent drug discovery targets involved in many cell processes. Despite their high potential as drug targets, the study of MPs has been hindered by limitations in expression, purification and stabilization in order to acquire thermodynamic and kinetic parameters of small molecules binding. These bottlenecks are grounded on the mandatory use of detergents to isolate and extract MPs from the cell plasma membrane and the coexistence of multiple conformations, which reflects biochemical versatility and intrinsic instability of MPs. In this work ,we set out to define a new strategy to enable surface plasmon resonance (SPR) measurements on a thermostabilized and truncated version of the human adenosine (A2A) G-protein-coupled receptor (GPCR) inserted in a lipid bilayer nanodisc in a label- and detergent-free manner by using a combination of affinity tags and GFP-based fluorescence techniques. We were able to detect and characterize small molecules binding kinetics on a GPCR fully embedded in a lipid environment. By providing a comparison between different binding assays in membranes, nanodiscs and detergent micelles, we show that nanodiscs can be used for small molecule binding studies by SPR to enhance the MP stability and to trigger a more native-like behaviour when compared to kinetics on A2A receptors isolated in detergent. This work provides thus a new methodology in drug discovery to characterize the binding kinetics of small molecule ligands for MPs targets in a lipid environment.


Subject(s)
Adenosine A2 Receptor Antagonists/metabolism , Lipid Bilayers , Membrane Lipids/metabolism , Receptor, Adenosine A2A/metabolism , Surface Plasmon Resonance , Temperature , Adenosine A2 Receptor Antagonists/chemistry , Detergents/chemistry , Humans , Kinetics , Ligands , Membrane Lipids/chemistry , Micelles , Models, Molecular , Nanostructures , Nanotechnology , Protein Binding , Protein Stability , Receptor, Adenosine A2A/chemistry , Spectrometry, Fluorescence
13.
Methods Mol Biol ; 1271: 39-54, 2015.
Article in English | MEDLINE | ID: mdl-25697515

ABSTRACT

After 25 years of intensive research, the understanding of how photoreceptors in the eye perceive light and convert it into nerve signals has largely advanced. Central to this is the structural and mechanistic exploration of the G protein-coupled receptor rhodopsin acting as a dim-light sensing pigment in the retina. Investigation of rhodopsin by X-ray crystallographic, electron microscopic, and biochemical means depends on the ability to produce and isolate pure rhodopsin protein. Robust and well-defined protocols permit the production and crystallization of rhodopsin variants to investigate the inactive ground, the fully activated metarhodopsin II state, or disease-causing rhodopsin mutations. This chapter details how we express and purify biologically active variants of rhodopsin from HEK293S GnTI(-) cells in a quality and quantity suitable for biochemical assays, crystallization, and structure determination.


Subject(s)
Rhodopsin/chemistry , Cell Line , Crystallography, X-Ray , Humans , Microscopy, Electron , Retina/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Rhodopsin/ultrastructure
14.
PLoS One ; 9(6): e98714, 2014.
Article in English | MEDLINE | ID: mdl-24979345

ABSTRACT

The activation of the G-protein transducin (Gt) by rhodopsin (Rho) has been intensively studied for several decades. It is the best understood example of GPCR activation mechanism and serves as a template for other GPCRs. The structure of the Rho/G protein complex, which is transiently formed during the signaling reaction, is of particular interest. It can help understanding the molecular details of how retinal isomerization leads to the G protein activation, as well as shed some light on how GPCR recognizes its cognate G protein. The native Rho/Gt complex isolated from bovine retina suffers from low stability and loss of the retinal ligand. Recently, we reported that constitutively active mutant of rhodopsin E113Q forms a Rho/Gt complex that is stable in detergent solution. Here, we introduce methods for a large scale preparation of the complex formed by the thermo-stabilized and constitutively active rhodopsin mutant N2C/M257Y/D282C(RhoM257Y) and the native Gt purified from bovine retinas. We demonstrate that the light-activated rhodopsin in this complex contains a covalently bound unprotonated retinal and therefore corresponds to the active metarhodopin II state; that the isolated complex is active and dissociates upon addition of GTPγS; and that the stoichiometry corresponds to a 1∶1 molar ratio of rhodopsin to the heterotrimeric G-protein. And finally, we show that the rhodopsin also forms stable complex with Gi. This complex has significantly higher thermostability than RhoM257Y/Gt complex and is resistant to a variety of detergents. Overall, our data suggest that the RhoM257Y/Gi complex is an ideal target for future structural and mechanistic studies of signaling in the visual system.


Subject(s)
Rhodopsin/metabolism , Transducin/metabolism , Animals , Cattle , HEK293 Cells , Humans , Mutation, Missense , Protein Binding , Protein Stability , Protein Subunits/chemistry , Protein Subunits/metabolism , Rhodopsin/chemistry , Rhodopsin/genetics , Transducin/chemistry
15.
Biochemistry ; 52(19): 3297-309, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23600489

ABSTRACT

The ATP-binding cassette exporters Sav1866 from Staphylococcus aureus and P-glycoprotein are known to share a certain sequence similarity and disposition for cationic allocrites. Conversely, the two ATPases react very differently to neutral detergents that have previously been shown to be inhibitory allocrites for P-glycoprotein. To gain insight into the functional differences of the two proteins, we compared their basal and detergent-stimulated ATPase activity. P-Glycoprotein was investigated in NIH-MDR1-G185 plasma membrane vesicles and Sav1866 in lipid vesicles exhibiting a membrane packing density and a surface potential similar to those of the plasma membrane vesicles. Under basal conditions, Sav1866 revealed a lower catalytic efficiency and concomitantly a more pronounced sodium chloride and pH dependence than P-glycoprotein. As expected, the cationic allocrites (alkyltrimethylammonium chlorides) induced similar bell-shaped activity curves as a function of concentration for both exporters, suggesting stimulation upon binding of the first and inhibition upon binding of the second allocrite molecule. However, the neutral allocrites (n-alkyl-ß-d-maltosides and n-ethylene glycol monododecyl ethers) reduced P-glycoprotein's ATPase activity at concentrations well below their critical micelle concentration (CMC) but strongly enhanced Sav1866's ATPase activity even at concentrations above their CMC. The lack of ATPase inhibition at high concentrations of neutral of detergents could be explained by their comparatively low binding affinity for the transmembrane domains of Sav1866, which seems to prevent binding of a second inhibitory molecule. The high ATPase activity in the presence of hydrophobic, long chain detergents moreover revealed that Sav1866, despite its lower basal catalytic efficiency, is a more efficient floppase for lipidlike amphiphiles than P-glycoprotein.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Staphylococcus aureus/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Circular Dichroism , Detergents , Humans , Hydrogen-Ion Concentration , Kinetics , Membrane Lipids/metabolism , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Salinity , Sequence Homology, Amino Acid , Staphylococcus aureus/genetics , Thermodynamics , Vanadates/pharmacology
16.
Nat Commun ; 3: 936, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22760635

ABSTRACT

Venom-derived peptide toxins can modify the gating characteristics of excitatory channels in neurons. How they bind and interfere with the flow of ions without directly blocking the ion permeation pathway remains elusive. Here we report the crystal structure of the trimeric chicken Acid-sensing ion channel 1 in complex with the highly selective gating modifier Psalmotoxin 1 at 3.0 Å resolution. The structure reveals the molecular interactions of three toxin molecules binding at the proton-sensitive acidic pockets of Acid-sensing ion channel 1 and electron density consistent with a cation trapped in the central vestibule above the ion pathway. A hydrophobic patch and a basic cluster are the key structural elements of Psalmotoxin 1 binding, locking two separate regulatory regions in their relative, desensitized-like arrangement. Our results provide a general concept for gating modifier toxin binding suggesting that both surface motifs are required to modify the gating characteristics of an ion channel.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Sodium Channels/chemistry , Sodium Channels/metabolism , Spider Venoms/metabolism , Acid Sensing Ion Channels , Animals , Cell Line , Crystallography, X-Ray , Electrophysiology , Humans , Models, Molecular , Peptides , Protein Structure, Secondary , Protein Structure, Tertiary , Spodoptera
17.
Curr Opin Struct Biol ; 17(4): 412-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17723295

ABSTRACT

ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that couple the transport of diverse substrates across cellular membranes to the hydrolysis of ATP. The crystal structures of four ABC transporters have recently been determined. They reveal similar arrangements of the conserved ATP-hydrolyzing nucleotide-binding domains, but unrelated architectures of the transmembrane domains, with the notable exception of a common 'coupling helix' that is essential for transmitting conformational changes. The structures suggest a mechanism that rationalizes ATP-driven transport: While binding of ATP appears to trigger an outward-facing conformation, dissociation of the hydrolysis products may promote an inward-facing conformation. This basic scheme can, in principle, explain nutrient import by ABC importers and drug extrusion by ABC exporters.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Biological Transport , Crystallography, X-Ray , Humans , Models, Biological , Models, Molecular , Protein Conformation , Structure-Activity Relationship
18.
Mol Microbiol ; 65(2): 250-7, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17578454

ABSTRACT

ATP-binding cassette (ABC) transporters are integral membrane proteins that move diverse substrates across cellular membranes. ABC importers catalyse the uptake of essential nutrients from the environment, whereas ABC exporters facilitate the extrusion of various compounds, including drugs and antibiotics, from the cytoplasm. How ABC transporters couple ATP hydrolysis to the transport reaction has long remained unclear. The recent crystal structures of four complete ABC transporters suggest that a key step of the molecular mechanism is conserved in importers and exporters. Whereas binding of ATP promotes an outward-facing conformation, the release of the hydrolysis products ADP and phosphate promotes an inward-facing conformation. This basic scheme can in principle explain ATP-driven drug export and binding protein-dependent nutrient uptake.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Biological Transport , Crystallography, X-Ray , Protein Conformation
19.
FEBS Lett ; 581(5): 935-8, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17303126

ABSTRACT

Staphylococcus aureus Sav1866 is a bacterial homolog of the human ABC transporter Mdr1 that causes multidrug resistance in cancer cells. We report the crystal structure of Sav1866 in complex with adenosine-5'-(beta,gamma-imido)triphosphate (AMP-PNP) at 3.4A resolution and compare it with the previously determined structure of Sav1866 with bound ADP. Besides differences in the ATP-binding sites, no significant conformational changes were observed. The results confirm that the ATP-bound state of multidrug ABC transporters is coupled to an outward-facing conformation of the transmembrane domains.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Adenylyl Imidodiphosphate/chemistry , Bacterial Proteins/chemistry , Staphylococcus aureus/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenylyl Imidodiphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Drug Stability , Models, Molecular , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staphylococcus aureus/genetics
20.
Nature ; 443(7108): 180-5, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-16943773

ABSTRACT

Multidrug transporters of the ABC family facilitate the export of diverse cytotoxic drugs across cell membranes. This is clinically relevant, as tumour cells may become resistant to agents used in chemotherapy. To understand the molecular basis of this process, we have determined the 3.0 A crystal structure of a bacterial ABC transporter (Sav1866) from Staphylococcus aureus. The homodimeric protein consists of 12 transmembrane helices in an arrangement that is consistent with cross-linking studies and electron microscopic imaging of the human multidrug resistance protein MDR1, but critically different from that reported for the bacterial lipid flippase MsbA. The observed, outward-facing conformation reflects the ATP-bound state, with the two nucleotide-binding domains in close contact and the two transmembrane domains forming a central cavity--presumably the drug translocation pathway--that is shielded from the inner leaflet of the lipid bilayer and from the cytoplasm, but exposed to the outer leaflet and the extracellular space.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Staphylococcus aureus/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Biological Transport , Crystallography, X-Ray , Models, Biological , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...