Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 06 28.
Article in English | MEDLINE | ID: mdl-31251171

ABSTRACT

One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gß subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gß as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.


Subject(s)
GTP-Binding Protein alpha Subunits/ultrastructure , GTP-Binding Protein beta Subunits/ultrastructure , GTP-Binding Protein gamma Subunits/ultrastructure , Rhodopsin/ultrastructure , Animals , Cattle , Cryoelectron Microscopy , GTP-Binding Protein beta Subunits/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Rhodopsin/metabolism
2.
Elife ; 72018 05 24.
Article in English | MEDLINE | ID: mdl-29792401

ABSTRACT

Mechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies. To target the limited hydrophilic surfaces of membrane proteins, we designed three sybody libraries that exhibit different shapes and moderate hydrophobicity of the randomized surface. A robust binder selection cascade combining ribosome and phage display enabled the generation of conformation-selective, high affinity sybodies against an ABC transporter and two previously intractable human SLC transporters, GlyT1 and ENT1. The platform does not require access to animal facilities and builds exclusively on commercially available reagents, thus enabling every lab to rapidly generate binders against challenging membrane proteins.


Subject(s)
ATP-Binding Cassette Transporters/isolation & purification , Equilibrative Nucleoside Transporter 1/isolation & purification , Glycine Plasma Membrane Transport Proteins/isolation & purification , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/immunology , ATP-Binding Cassette Transporters/metabolism , Cell Surface Display Techniques , Equilibrative Nucleoside Transporter 1/chemistry , Equilibrative Nucleoside Transporter 1/immunology , Equilibrative Nucleoside Transporter 1/metabolism , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine Plasma Membrane Transport Proteins/immunology , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Protein Binding , Protein Conformation , Protein Stability , Single-Domain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...