Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Tectonics ; 41(10): e2022TC007231, 2022 Oct.
Article En | MEDLINE | ID: mdl-36636336

Several crustal and lithospheric mechanisms lead to deformation and vertical motion of the upper plate during subduction, but their relative contribution is often enigmatic. Multiple areas of the Hellenic Forearc have been uplifting since Plio-Quaternary times, yet spatiotemporal characteristics and sources of this uplift are poorly resolved. The remarkable geology and geomorphology of Kythira Island, in the southwestern Hellenic forearc, allow for a detailed tectonic reconstruction since the Late Miocene. We present a morphotectonic map of the island, together with new biostratigraphic dating and detailed analyses of active fault strikes and marine terraces. We find that the Tortonian-Pliocene stratigraphy in Kythira records ∼100 m of subsidence, and a wide coastal rasa marks the ∼2.8-2.4 Ma maximum transgression. Subsequent marine regression of ∼300-400 m and minor E-W tilt are recorded in ∼12 marine terrace levels for which we estimate uplift rates of ∼0.2-0.4 mm/yr. Guided by simple landscape evolution models, we interpret the coastal morphology as the result of initial stability or of slow, gradual sea-level drop since ∼2.8-2.4 Ma, followed by faster uplift since ∼1.5-0.7 Ma. Our findings on- and offshore suggest that E-W extension is the dominant mode of regional active upper crustal deformation, and N-S normal faults accommodate most, if not all of the uplift on Kythira. We interpret the initiation of E-W extension as the result of a change in plate boundary conditions, in response to either propagation of the North Anatolian Fault, incipient collision with the African plate, mantle dynamics or a combination thereof.

3.
Sci Rep ; 9(1): 4260, 2019 Mar 07.
Article En | MEDLINE | ID: mdl-30842435

Geomorphic strain markers accumulating the effects of many earthquake cycles help to constrain the mechanical behaviour of continental rift systems as well as the related seismic hazards. In the Corinth Rift (Greece), the unique record of onshore and offshore markers of Pleistocene ~100-ka climate cycles provides an outstanding possibility to constrain rift mechanics over a range of timescales. Here we use high-resolution topography to analyse the 3D geometry of a sequence of Pleistocene emerged marine terraces associated with flexural rift-flank uplift. We integrate this onshore dataset with offshore seismic data to provide a synoptic view of the flexural deformation across the rift. This allows us to derive an average slip rate of 4.5-9.0 mm·yr-1 on the master fault over the past ~610 ka and an uplift/subsidence ratio of 1:1.1-2.4. We reproduce the observed flexure patterns, using 3 and 5-layered lithospheric scale finite element models. Modelling results imply that the observed elastic flexure is produced by coseismic slip along 40-60° planar normal faults in the elastic upper crust, followed by postseismic viscous relaxation occurring within the basal lower crust or upper mantle. We suggest that such a mechanism may typify rapid localised extension of continental lithosphere.

4.
Sci Rep ; 9(1): 3116, 2019 02 28.
Article En | MEDLINE | ID: mdl-30816341

Young rifts are shaped by combined tectonic and surface processes and climate, yet few records exist to evaluate the interplay of these processes over an extended period of early rift-basin development. Here, we present the longest and highest resolution record of sediment flux and paleoenvironmental changes when a young rift connects to the global oceans. New results from International Ocean Discovery Program (IODP) Expedition 381 in the Corinth Rift show 10s-100s of kyr cyclic variations in basin paleoenvironment as eustatic sea level fluctuated with respect to sills bounding this semi-isolated basin, and reveal substantial corresponding changes in the volume and character of sediment delivered into the rift. During interglacials, when the basin was marine, sedimentation rates were lower (excepting the Holocene), and bioturbation and organic carbon concentration higher. During glacials, the basin was isolated from the ocean, and sedimentation rates were higher (~2-7 times those in interglacials). We infer that reduced vegetation cover during glacials drove higher sediment flux from the rift flanks. These orbital-timescale changes in rate and type of basin infill will likely influence early rift sedimentary and faulting processes, potentially including syn-rift stratigraphy, sediment burial rates, and organic carbon flux and preservation on deep continental margins worldwide.

...