Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Photochem Photobiol B ; 228: 112393, 2022 Mar.
Article En | MEDLINE | ID: mdl-35144054

Ag doped Sn3O4 Nanostructure and immobilized on hyperbranched polypyrrole is investigated in this project. The product was synthesized by the hydrothermal synthesis method. The surface and structural characteristics of the product was studied by different instrumental analysis. The fabricated nanocomposites was utilized as a nano photocatalyst in the removal of methylene blue dye. The crystallography results depicts the triclinic phase of Sn3O4 with the crystallite size 36.3 nm. The band gap of the Ag-Sn3O4/hyperbranched polypyrrole was found 1.50 eV from kubelka-munk measurements. The specific surface area was increased in the presence of the hyperbranched polypyrrole as compared to Ag-Sn3O4 samples. The photo-catalytic activity of composites was found 100.0% degradation of CR in 30 min under visible light irradiation. The catalytic kinetic was followed from the first kinetic model. Moreover, the Ag/Sn3O4/hyperbranched polypyrrole was applied as a bactericidal agent against Streptococcus pneumoniae, and Pseudomonas aeruginosa bacteria. Determination of Streptococcus pyogenes as a pathogenic bacteria was investigated by using aptamer/Ag/Sn3O4/hyperbranched polypyrrole in peroxidase activity. The detection limit of S. pyogenes was 71.0 CFU/mL by using the nano-aptamer.


Anti-Bacterial Agents , Nanocomposites , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Light , Nanocomposites/chemistry , Polymers , Pyrroles , Silver/chemistry
2.
ACS Omega ; 5(25): 15052-15062, 2020 Jun 30.
Article En | MEDLINE | ID: mdl-32637777

A dye-sensitized solar cell assembly can be used to harvest solar energy, while suitable dye sensitizers can be used to purify water. Here, we characterized the activity trends of four dye sensitizers, namely, PORPC-1, PORPC-2, PORPC-3, and PORPC-4, for water purification applications using density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE), B3LYP, and PBE0 functionals, ΔSCF, time-dependent DFT (TD-DFT), and quasiparticle Green's function (GW) methods. The energy levels of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) were calculated using gas-phase and aqueous-phase methods in order to understand charge-injection abilities and the dye regeneration processes. PBE, B3LYP, PBE0, and TD-DFT methods failed to predict PORPC-4 to be the best sensitizer, while PORPC-2 and PORPC-4 were predicted to be the best sensitizers using ΔSCF coupled with the implicit solvation method, and HOMO-LUMO energies were corrected for the aqueous environment in the GW calculations. However, none of these methods accurately predicted the performance trend of all four dye sensitizers. Consequently, we used the aggregation assembly patterns of the dye molecules in an aqueous environment to further probe the activity trends and found that PORPC-3 and PORPC-4 prefer J-aggregated assembly patterns, whereas PROPC-1 and PORPC-2 prefer to be H-aggregated. Therefore, the performance of these dye molecules can be determined by combining HOMO-LUMO energy levels with aggregate-assembly patterns, with the activity trend predicted to be PORPC-4 > PORPC-2 > PORPC-3 > PORPC-1, which is in good agreement with experimental findings.

3.
ACS Omega ; 4(5): 8056-8064, 2019 May 31.
Article En | MEDLINE | ID: mdl-31459895

Anatase and brookite are robust materials with enhanced photocatalytic properties. In this study, we used density functional theory (DFT) with a hybrid functional and the Hubbard on-site potential methods to determine electron- and hole-polaron geometries for anatase and brookite and their energetics. Localized electron and hole polarons were predicted not to form in anatase using DFT with hybrid functionals. In contrast, brookite formed both electron and hole polarons. The brookite electron-polaronic solution exhibits coexisting localized and delocalized states, with hole polarons mainly dispersed on two-coordinated oxygen ions. Hubbard on-site potential testing over the wide 4.0-10 eV range revealed that brookite polarons are formed at U = 6 eV, while anatase polarons are formed at U = 8 eV. The brookite electron polaron was always localized on a single titanium ion under the Hubbard model, whereas the hole polaron was dispersed over four oxygen atoms, consistent with the hybrid DFT studies. The anatase electron polarons were dispersed at lower on-site potentials but were more localized at higher potentials. Both methods predict that brookite has a higher driving force for the formation of polarons than anatase.

...