Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34171309

ABSTRACT

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Subject(s)
Neoplasms/genetics , Neoplasms/immunology , RNA Splicing/genetics , Animals , Antigen Presentation/drug effects , Antigen Presentation/immunology , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Epitopes/immunology , Ethylenediamines/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Inflammation/pathology , Mice, Inbred C57BL , Peptides/metabolism , Protein Isoforms/metabolism , Pyrroles/pharmacology , RNA Splicing/drug effects , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
2.
Nat Genet ; 52(1): 84-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31911676

ABSTRACT

While RNA-seq has enabled comprehensive quantification of alternative splicing, no correspondingly high-throughput assay exists for functionally interrogating individual isoforms. We describe pgFARM (paired guide RNAs for alternative exon removal), a CRISPR-Cas9-based method to manipulate isoforms independent of gene inactivation. This approach enabled rapid suppression of exon recognition in polyclonal settings to identify functional roles for individual exons, such as an SMNDC1 cassette exon that regulates pan-cancer intron retention. We generalized this method to a pooled screen to measure the functional relevance of 'poison' cassette exons, which disrupt their host genes' reading frames yet are frequently ultraconserved. Many poison exons were essential for the growth of both cultured cells and lung adenocarcinoma xenografts, while a subset had clinically relevant tumor-suppressor activity. The essentiality and cancer relevance of poison exons are likely to contribute to their unusually high conservation and contrast with the dispensability of other ultraconserved elements for viability.


Subject(s)
Adenocarcinoma of Lung/pathology , Alternative Splicing , Exons/genetics , Genes, Tumor Suppressor , RNA Isoforms/genetics , RNA Splicing Factors/genetics , RNA, Messenger/genetics , SMN Complex Proteins/genetics , Adenocarcinoma of Lung/genetics , Animals , Cell Proliferation , HeLa Cells , High-Throughput Screening Assays , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Dev Cell ; 50(5): 658-671.e7, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31327741

ABSTRACT

Advances in cancer immunotherapies make it critical to identify genes that modulate antigen presentation and tumor-immune interactions. We report that DUX4, an early embryonic transcription factor that is normally silenced in somatic tissues, is re-expressed in diverse solid cancers. Both cis-acting inherited genetic variation and somatically acquired mutations in trans-acting repressors contribute to DUX4 re-expression in cancer. Although many DUX4 target genes encode self-antigens, DUX4-expressing cancers were paradoxically characterized by reduced markers of anti-tumor cytolytic activity and lower major histocompatibility complex (MHC) class I gene expression. We demonstrate that DUX4 expression blocks interferon-γ-mediated induction of MHC class I, implicating suppressed antigen presentation in DUX4-mediated immune evasion. Clinical data in metastatic melanoma confirmed that DUX4 expression was associated with significantly reduced progression-free and overall survival in response to anti-CTLA-4. Our results demonstrate that cancers can escape immune surveillance by reactivating a normal developmental pathway and identify a therapeutically relevant mechanism of cell-intrinsic immune evasion.


Subject(s)
Genes, MHC Class I , Homeodomain Proteins/metabolism , Immune Evasion , Neoplasms/immunology , Antigen Presentation , CTLA-4 Antigen/immunology , HeLa Cells , Homeodomain Proteins/genetics , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , MCF-7 Cells , Neoplasms/genetics , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL