Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Article in English | MEDLINE | ID: mdl-38695677

ABSTRACT

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Subject(s)
Ascomycota , Endoplasmic Reticulum , Hordeum , Plant Diseases , Plant Immunity , Plant Proteins , Hordeum/microbiology , Hordeum/genetics , Hordeum/immunology , Ascomycota/pathogenicity , Plant Proteins/metabolism , Plant Proteins/genetics , Endoplasmic Reticulum/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Protein Domains
2.
Mol Plant Pathol ; 23(5): 634-648, 2022 05.
Article in English | MEDLINE | ID: mdl-35150038

ABSTRACT

Effectors that suppress effector-triggered immunity (ETI) are an essential part of the arms race in the co-evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ-XopX-mediated immune responses. Both mutations individually affect the virulence-promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.


Subject(s)
Oryza , Xanthomonas , Bacterial Proteins/metabolism , Immunity , Mutation/genetics , Oryza/metabolism , Plant Diseases/microbiology , Virulence/genetics
3.
Genetica ; 150(1): 1-12, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35018532

ABSTRACT

The CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) system was discovered in bacteria and archea as an acquired immune response to protect the cells from infection. This technology has now evolved to become an efficient genome editing tool, and is replacing older gene editing technologies. This technique uses programmable sgRNAs to guide the Cas9 endonuclease to the target DNA location. sgRNA is a vital component of the CRISPR technology, since without it the Cas nuclease cannot reach to its target location. Over the years, many tools have been developed for designing sgRNAs, the details of which have been extensively reviewed here. It has proven to be a promising tool in the field of genetic engineering and has successfully generated many plant varieties with better and desirable qualities. In the present review, we attempted to collect,collate and summarize information related to the development of CRISPR/Cas9 system as a tool and subsequently into a technique having a wide array of applications in the field of plant genome editing in attaining desirable traits like resistance to various diseases, nutritional enhancement etc. In addition, the probable future prospects and the various bio-safety concerns associated with CRISPR gene editing technology have been discussed in detail.


Subject(s)
CRISPR-Cas Systems , Gene Editing , DNA/metabolism , Gene Editing/methods , Genome, Plant , Technology
4.
Front Cell Dev Biol ; 10: 1072716, 2022.
Article in English | MEDLINE | ID: mdl-36684438

ABSTRACT

Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.

5.
Rice (N Y) ; 14(1): 94, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792681

ABSTRACT

The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.

6.
Front Genet ; 11: 873, 2020.
Article in English | MEDLINE | ID: mdl-32973870

ABSTRACT

STI/HOP functions as a co-chaperone of HSP90 and HSP70 whose molecular function has largely been being restricted as an adaptor protein. However, its role in thermotolerance is not well explored. In this article, we have identified six members of the TaSTI family, which were named according to their distribution on group 2 and group 6 chromosomes. Interestingly, TaSTI-2 members were found to express higher as compared to TaSTI-6 members under heat stress conditions, with TaSTI-2A being one of the most heat-responsive member. Consistent with this, the heterologous expression of TaSTI-2A in Arabidopsis resulted in enhanced basal as well as acquired thermotolerance as revealed by the higher yield of the plants under stress conditions. Similarly in the case of rice, TaSTI-2A transgenics exhibited enhanced thermal tolerance. Moreover, we demonstrate that TaSTI-2A interacts with TaHSP90 not only in the nucleus but also in the ER and Golgi bodies, which has not been shown till now. Additionally, TaHSP70 was also found to interact with TaSTI-6D specifically in the cytosol. Thus, these data together suggested that the TaSTI family members might play different roles under heat stress conditions in order to fine-tune the heat stress response in plants.

7.
Plant J ; 104(2): 332-350, 2020 10.
Article in English | MEDLINE | ID: mdl-32654337

ABSTRACT

Xanthomonas oryzae pv. oryzae uses several type III secretion system (T3SS) secreted effectors, namely XopN, XopQ, XopX and XopZ, to suppress rice immune responses that are induced following treatment with cell wall degrading enzymes. Here we show that a T3SS secreted effector XopX interacts with two of the eight rice 14-3-3 proteins. Mutants of XopX that are defective in 14-3-3 binding are also defective in suppression of immune responses, suggesting that interaction with 14-3-3 proteins is required for suppression of host innate immunity. However, Agrobacterium-mediated delivery of both XopQ and XopX into rice cells results in induction of rice immune responses. These immune responses are not observed when either protein is individually delivered into rice cells. XopQ-XopX-induced rice immune responses are not observed with a XopX mutant that is defective in 14-3-3 binding. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicate that XopQ and XopX interact with each other. A screen for Xanthomonas effectors that can suppress XopQ-XopX-induced rice immune responses led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of Xanthomonas T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions/immunology , Oryza/immunology , Oryza/microbiology , Xanthomonas/pathogenicity , 14-3-3 Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Binding Sites , Cell Nucleus/metabolism , Mutation , Phosphorylation , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/immunology , Plant Proteins/metabolism , Serine/genetics , Xanthomonas/metabolism
8.
Mol Plant Pathol ; 20(7): 976-989, 2019 07.
Article in English | MEDLINE | ID: mdl-31094082

ABSTRACT

Many bacterial phytopathogens employ effectors secreted through the type-III secretion system to suppress plant innate immune responses. The Xanthomonas type-III secreted non-TAL effector protein Xanthomonas outer protein Q (XopQ) exhibits homology to nucleoside hydrolases. Previous work indicated that mutations which affect the biochemical activity of XopQ fail to affect its ability to suppress rice innate immune responses, suggesting that the effector might be acting through some other pathway or mechanism. In this study, we show that XopQ interacts in yeast and in planta with two rice 14-3-3 proteins, Gf14f and Gf14g. A serine to alanine mutation (S65A) of a 14-3-3 interaction motif in XopQ abolishes the ability of XopQ to interact with the two 14-3-3 proteins and to suppress innate immunity. Surprisingly, the S65A mutant gains the ability to interact with a third 14-3-3 protein that is a negative regulator of innate immunity. The XopQS65A mutant is an inducer of rice immune responses and this property is dominant over the wild-type function of XopQ. Taken together, these results suggest that XopQ targets the rice 14-3-3 mediated immune response pathway and that its differential phosphorylation might enable interaction with alternative 14-3-3 proteins.


Subject(s)
14-3-3 Proteins/metabolism , Bacterial Proteins/metabolism , Mutation/genetics , Oryza/immunology , Oryza/microbiology , Plant Immunity , Xanthomonas/metabolism , Amino Acid Motifs , Bacterial Proteins/chemistry , Phosphorylation , Plant Diseases/microbiology , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL