Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article En | MEDLINE | ID: mdl-36361550

Alterations in DNA methylation are critical for the carcinogenesis of ovarian tumors, especially ovarian carcinoma (OC). DNMT3B, a de novo DNA methyltransferase (DNMT), encodes for fifteen spliced protein products or isoforms. DNMT3B isoforms lack exons for the catalytic domain, with functional consequences on catalytic activity. Abnormal expression of DNMT3B isoforms is frequently observed in several types of cancer, such as breast, lung, kidney, gastric, liver, skin, leukemia, and sarcoma. However, the expression patterns and consequences of DNMT3B isoforms in OC are unknown. In this study, we analyzed each DNMT and DNMT3B isoforms expression by qPCR in 63 OC samples and their association with disease-free survival (DFS), overall survival (OS), and tumor progression. We included OC patients with the main histological subtypes of EOC and patients in all the disease stages and found that DNMTs were overexpressed in advanced stages (p-value < 0.05) and high-grade OC (p-value < 0.05). Remarkably, we found DNMT3B1 overexpression in advanced stages (p-value = 0.0251) and high-grade serous ovarian carcinoma (HGSOC) (p-value = 0.0313), and DNMT3B3 was overexpressed in advanced stages (p-value = 0.0098) and high-grade (p-value = 0.0004) serous ovarian carcinoma (SOC). Finally, we observed that overexpression of DNMT3B isoforms was associated with poor prognosis in OC and SOC. DNMT3B3 was also associated with FDS (p-value = 0.017) and OS (p-value = 0.038) in SOC patients. In addition, the ovarian carcinoma cell lines OVCAR3 and SKOV3 also overexpress DNMT3B3. Interestingly, exogenous overexpression of DNMT3B3 in OVCAR3 causes demethylation of satellite 2 sequences in the pericentromeric region. In summary, our results suggest that DNMT3B3 expression is altered in OC.


Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , DNA Methylation , Apoptosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Carcinoma, Ovarian Epithelial/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , DNA/metabolism , DNA Methyltransferase 3B
2.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article En | MEDLINE | ID: mdl-36012258

DNA methylation is an epigenetic mark that living beings have used in different environments. The MTases family catalyzes DNA methylation. This process is conserved from archaea to eukaryotes, from fertilization to every stage of development, and from the early stages of cancer to metastasis. The family of DNMTs has been classified into DNMT1, DNMT2, and DNMT3. Each DNMT has been duplicated or deleted, having consequences on DNMT structure and cellular function, resulting in a conserved evolutionary reaction of DNA methylation. DNMTs are conserved in the five kingdoms of life: bacteria, protists, fungi, plants, and animals. The importance of DNMTs in whether methylate or not has a historical adaptation that in mammals has been discovered in complex regulatory mechanisms to develop another padlock to genomic insurance stability. The regulatory mechanisms that control DNMTs expression are involved in a diversity of cell phenotypes and are associated with pathologies transcription deregulation. This work focused on DNA methyltransferases, their biology, functions, and new inhibitory mechanisms reported. We also discuss different approaches to inhibit DNMTs, the use of non-coding RNAs and nucleoside chemical compounds in recent studies, and their importance in biological, clinical, and industry research.


DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Animals , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Eukaryota/genetics , Mammals/metabolism
...