Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 36(5): 969-983.e10, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38490211

ABSTRACT

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , Lipid Metabolism , Tumor Microenvironment , Acetyl-CoA Carboxylase/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Humans , Fatty Acids/metabolism , Female , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondria/metabolism
2.
Res Sq ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333134

ABSTRACT

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

SELECTION OF CITATIONS
SEARCH DETAIL