Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Cancer ; 202: 113978, 2024 May.
Article in English | MEDLINE | ID: mdl-38471290

ABSTRACT

BACKGROUND: The PAOLA-1/ENGOT-ov25 trial showed that maintenance olaparib plus bevacizumab increases survival of advanced ovarian cancer patients with homologous recombination deficiency (HRD). However, decentralized solutions to test for HRD in clinical routine are scarce. The goal of this study was to retrospectively validate on tumor samples from the PAOLA-1 trial, the decentralized SeqOne assay, which relies on shallow Whole Genome Sequencing (sWGS) to capture genomic instability and targeted sequencing to determine BRCA status. METHODS: The study comprised 368 patients from the PAOLA-1 trial. The SeqOne assay was compared to the Myriad MyChoice HRD test (Myriad Genetics), and results were analyzed with respect to Progression-Free Survival (PFS). RESULTS: We found a 95% concordance between the HRD status of the two tests (95% Confidence Interval (CI); 92%-97%). The Positive Percentage Agreement (PPA) of the sWGS test was 95% (95% CI; 91%-97%) like its Negative Percentage Agreement (NPA) (95% CI; 89%-98%). In patients with HRD-positive tumors treated with olaparib plus bevacizumab, the PFS Hazard Ratio (HR) was 0.38 (95% CI; 0.26-0.54) with SeqOne assay and 0.32 (95% CI; 0.22-0.45) with the Myriad assay. In patients with HRD-negative tumors, HR was 0.99 (95% CI; 0.68-1.42) and 1.05 (95% CI; 0.70-1.57) with SeqOne and Myriad assays. Among patients with BRCA-wildtype tumors, those with HRD-positive tumors, benefited from olaparib plus bevacizumab maintenance, with HR of 0.48 (95% CI: 0.29-0.79) and of 0.38 (95% CI: 0.23 to 0.63) with the SeqOne and Myriad assay. CONCLUSION: The SeqOne assay offers a clinically validated approach to detect HRD.


Subject(s)
Ovarian Neoplasms , Humans , Female , Bevacizumab/therapeutic use , Retrospective Studies , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial , Homologous Recombination
2.
Sci Rep ; 13(1): 9791, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328655

ABSTRACT

Ionizing radiation is known to be DNA damaging and mutagenic, however less is known about which mutational footprints result from exposures of human cells to different types of radiation. We were interested in the mutagenic effects of particle radiation exposures on genomes of various human cell types, in order to gauge the genotoxic risks of galactic cosmic radiation, and of certain types of tumor radiotherapy. To this end, we exposed cultured cell lines from the human blood, breast and lung to fractionated proton and alpha particle (helium nuclei) beams at doses sufficient to considerably affect cell viability. Whole-genome sequencing revealed that mutation rates were not overall markedly increased upon proton and alpha exposures. However, there were modest changes in mutation spectra and distributions, such as the increases in clustered mutations and of certain types of indels and structural variants. The spectrum of mutagenic effects of particle beams may be cell-type and/or genetic background specific. Overall, the mutational effects of repeated exposures to proton and alpha radiation on human cells in culture appear subtle, however further work is warranted to understand effects of long-term exposures on various human tissues.


Subject(s)
Cosmic Radiation , Protons , Humans , Alpha Particles/adverse effects , Cosmic Radiation/adverse effects , Radiation, Ionizing , Mutation , Mutagens
3.
Nat Genet ; 55(4): 607-618, 2023 04.
Article in English | MEDLINE | ID: mdl-36928603

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive cancer with rising incidence and challenging clinical management. Through a large series of whole-genome sequencing data, integrated with transcriptomic and epigenomic data using multiomics factor analysis, we demonstrate that the current World Health Organization classification only accounts for up to 10% of interpatient molecular differences. Instead, the MESOMICS project paves the way for a morphomolecular classification of MPM based on four dimensions: ploidy, tumor cell morphology, adaptive immune response and CpG island methylator profile. We show that these four dimensions are complementary, capture major interpatient molecular differences and are delimited by extreme phenotypes that-in the case of the interdependent tumor cell morphology and adapted immune response-reflect tumor specialization. These findings unearth the interplay between MPM functional biology and its genomic history, and provide insights into the variations observed in the clinical behavior of patients with MPM.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/complications , Mesothelioma/genetics , Mesothelioma/pathology , Multiomics , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics
4.
Cancers (Basel) ; 13(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067022

ABSTRACT

Background: Malignant melanoma and RCC have different embryonic origins, no common lifestyle risk factors but intriguingly share biological properties such as immune regulation and radioresistance. An excess risk of malignant melanoma is observed in RCC patients and vice versa. This bidirectional association is poorly understood, and hypothetic genetic co-susceptibility remains largely unexplored. Results: We hereby provide a clinical and genetic description of a series of 125 cases affected by both malignant melanoma and RCC. Clinical germline mutation testing identified a pathogenic variant in a melanoma and/or RCC predisposing gene in 17/125 cases (13.6%). This included mutually exclusive variants in MITF (p.E318K locus, N = 9 cases), BAP1 (N = 3), CDKN2A (N = 2), FLCN (N = 2), and PTEN (N = 1). A subset of 46 early-onset cases, without underlying germline variation, was whole-exome sequenced. In this series, thirteen genes were significantly enriched in mostly exclusive rare variants predicted to be deleterious, compared to 19,751 controls of similar ancestry. The observed variation mainly consisted of novel or low-frequency variants (<0.01%) within genes displaying strong evolutionary mutational constraints along the PI3K/mTOR pathway, including PIK3CD, NFRKB, EP300, MTOR, and related epigenetic modifier SETD2. The screening of independently processed germline exomes from The Cancer Genome Atlas confirmed an association with melanoma and RCC but not with cancers of established differing etiology such as lung cancers. Conclusions: Our study highlights that an exome-wide case-control enrichment approach may better characterize the rare variant-based missing heritability of multiple primary cancers. In our series, the co-occurrence of malignant melanoma and RCC was associated with germline variation in the PI3K/mTOR signaling cascade, with potential relevance for early diagnostic and clinical management.

5.
NAR Genom Bioinform ; 2(2): lqaa021, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32363341

ABSTRACT

The emergence of next-generation sequencing (NGS) has revolutionized the way of reaching a genome sequence, with the promise of potentially providing a comprehensive characterization of DNA variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when trying to identify low abundance mutations, such as subclonal mutations, tumour-derived alterations in body fluids or somatic mutations from histological normal tissue. The main challenge is to precisely distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare they reach similar abundance levels as artefacts. Here, we present needlestack, a highly sensitive variant caller, which directly learns from the data the level of systematic sequencing errors to accurately call mutations. Needlestack is based on the idea that the sequencing error rate can be dynamically estimated from analysing multiple samples together. We show that the sequencing error rate varies across alterations, illustrating the need to precisely estimate it. We evaluate the performance of needlestack for various types of variations, and we show that needlestack is robust among positions and outperforms existing state-of-the-art method for low abundance mutations. Needlestack, along with its source code is freely available on the GitHub platform: https://github.com/IARCbioinfo/needlestack.

6.
EBioMedicine ; 55: 102462, 2020 May.
Article in English | MEDLINE | ID: mdl-32249202

ABSTRACT

BACKGROUND: The DNA released into the bloodstream by malignant tumours· called circulating tumour DNA (ctDNA), is often a small fraction of total cell-free DNA shed predominantly by hematopoietic cells and is therefore challenging to detect. Understanding the biological properties of ctDNA is key to the investigation of its clinical relevance as a non-invasive marker for cancer detection and monitoring. METHODS: We selected 40 plasma DNA samples of pancreatic cancer cases previously reported to carry a KRAS mutation at the 'hotspot' codon 12 and re-screened the cell-free DNA using a 4-size amplicons strategy (57 bp, 79 bp, 167 bp and 218 bp) combined with ultra-deep sequencing in order to investigate whether amplicon lengths could impact on the capacity of detection of ctDNA, which in turn could provide inference of ctDNA and non-malignant cell-free DNA size distribution. FINDINGS: Higher KRAS amplicon size (167 bp and 218 bp) was associated with lower detectable cell-free DNA mutant allelic fractions (p < 0·0001), with up to 4·6-fold (95% CI: 2·6-8·1) difference on average when comparing the 218bp- and the 57bp-amplicons. The proportion of cases with detectable KRAS mutations was also hampered with increased amplicon lengths, with only half of the cases having detectable ctDNA using the 218 bp assay relative to those detected with amplicons less than 80 bp. INTERPRETATION: Tumour-derived mutations are carried by shorter cell-free DNA fragments than fragments of wild-type allele. Targeting short amplicons increases the sensitivity of cell-free DNA assays for pancreatic cancer and should be taken into account for optimized assay design and for evaluating their clinical performance. FUNDING: IARC; MH CZ - DRO; MH SK; exchange program between IARC and Sao Paulo medical Sciences; French Cancer League.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Alleles , Base Sequence , Biomarkers, Tumor/blood , Case-Control Studies , Circulating Tumor DNA/blood , Codon , Computational Biology , Gene Expression , Gene Frequency , Humans , Mutation , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Pancreatitis, Chronic/blood , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , Proto-Oncogene Proteins p21(ras)/blood , Sensitivity and Specificity
7.
Nat Commun ; 9(1): 1048, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535388

ABSTRACT

Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung cancers, but their precise relationship has remained unclear. Here we perform a comprehensive genomic (n = 60) and transcriptomic (n = 69) analysis of 75 LCNECs and identify two molecular subgroups: "type I LCNECs" with bi-allelic TP53 and STK11/KEAP1 alterations (37%), and "type II LCNECs" enriched for bi-allelic inactivation of TP53 and RB1 (42%). Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas, no transcriptional relationship was found; instead LCNECs form distinct transcriptional subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neuroendocrine profile with ASCL1high/DLL3high/NOTCHlow, type II LCNECs bear TP53 and RB1 alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a pattern of ASCL1low/DLL3low/NOTCHhigh, and an upregulation of immune-related pathways. In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung tumors.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Neuroendocrine Tumors/genetics , Small Cell Lung Carcinoma/genetics , DNA Mutational Analysis , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , In Vitro Techniques , Lung Neoplasms/genetics
8.
Oncotarget ; 7(48): 78827-78840, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27705932

ABSTRACT

The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Circulating Tumor DNA/genetics , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Aged , Biomarkers, Tumor/blood , CA-19-9 Antigen/blood , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/pathology , Case-Control Studies , Circulating Tumor DNA/blood , Czech Republic , DNA Mutational Analysis , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neoplasm Staging , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Phenotype , Pilot Projects , Predictive Value of Tests , Proto-Oncogene Proteins p21(ras)/blood , Reproducibility of Results , Slovakia
9.
EBioMedicine ; 10: 117-23, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27377626

ABSTRACT

Circulating tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent candidate for early detection given there are no successful therapeutic options for late-stage disease, and it displays almost universal inactivation of TP53. We assessed the presence of TP53 mutations in the cell-free DNA (cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. We identified mutations using a pipeline specifically designed to accurately detect variants at very low fractions. We detected TP53 mutations in the cfDNA of 49% SCLC patients and 11.4% of non-cancer controls. When stratifying the 51 initial SCLC cases by stage, TP53 mutations were detected in the cfDNA of 35.7% early-stage and 54.1% late-stage SCLC patients. The results in the controls were further replicated in 10.8% of an independent series of 102 non-cancer controls. The detection of TP53 mutations in 11% of the 225 non-cancer controls suggests that somatic mutations in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges for the development of ctDNA screening tests.


Subject(s)
Biomarkers, Tumor , DNA, Neoplasm , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/genetics , Case-Control Studies , DNA, Neoplasm/blood , Early Detection of Cancer , Female , Humans , Leukocytes/metabolism , Lung Neoplasms/blood , Male , Mutation , Neoplasm Staging , Small Cell Lung Carcinoma/blood , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...