Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(27): 29598-29608, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005762

ABSTRACT

The development of electrochemical sensors for flutamide detection is a crucial step in biomedical research and environmental monitoring. In this study, a composite of Actinidia-derived carbon particles (CPs) and tungsten disulfide (WS2) was formed and used as an electrocatalyst for the electrochemical detection of flutamide. The CPs had an average diameter of 500 nm and contained surface hydroxyl and carbonyl groups. These groups may help anchor the CPs onto the WS2 platelets, resulting in the formation of a CPs-WS2 nanocomposite with a high surface area and a conducting network, enabling electron transfer. Using the CPs-WS2 composite supported at a glassy carbon electrode, a linear concentration range extending from 1 nM to 104 µM, a limit of detection of 0.74 nM, and a sensitivity of 26.9 ± 0.7 µA µM-1 cm-2 were obtained in the detection of flutamide in a phosphate buffer. The sensor showed good recovery, ranging from 88.47 to 95.02%, in river water samples, and exhibited very good selectivity in the presence of inorganic ions, including Al3+, Co2+, Cu2+, Fe3+, Zn2+, NO3 -, SO4 2-, CO3 2-, and Cl-.

2.
Environ Res ; 248: 118391, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38309562

ABSTRACT

Sulfonamides are a family of synthetic drugs with a broad-spectrum of antimicrobial activity. Like other antimicrobials, they have been found in aquatic environments, making their detection important. Herein, an electrochemical sensor was designed using tannic acid exfoliated few-layered MoS2 sheets, which were combined with a mixture of reduced graphene oxide (rGO) and graphite flakes (G). The rGO/G was formed using electrodeposition, by cycling from -0.5 to -1.5 V in an acidified sulfate solution with well dispersed GO and G. The exfoliated MoS2 sheets were drop cast over the wrinkled rGO/G surface to form the final sensor, GCE/rGO/G/ta-MoS2. The mixture of rGO/G was superior to pure rGO in formulating the sensor. The fabricated sensor exhibited an extended linear range from 0.1 to 566 µM, with a LOD of 86 nM, with good selectivity in the presence of various salts found in water and structurally related drugs from the sulfonamide family. The sensor showed very good reproducibility with the RSD at 0.48 %, repeatability and acceptable long term stability over a 10-day period. Good recovery from both tap and river water was achieved, with recovery ranging from 90.4 to 98.9 % for tap water and from 83.5 to 94.4 % for real river water samples.


Subject(s)
Graphite , Nanocomposites , Polyphenols , Molybdenum , Electrochemical Techniques , Reproducibility of Results , Sulfanilamide , Water
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047001

ABSTRACT

Despite the enormous importance of cisplatin as a chemotherapeutic agent, its application is impacted by dose-limiting side effects and lack of selectivity for cancer cells. Researchers can overcome these issues by taking advantage of the pro-drug nature of the platinum(IV) oxidation state, and by modifying the coordination sphere of the metal centre with specific vectors whose receptors are overexpressed in tumour cell membranes (e.g., carbohydrates). In this paper we report the synthesis of four novel carbohydrate-modified Pt(IV) pro-drugs, based on the cisplatin scaffold, and their biological activity against osteosarcoma (OS), a malignant tumour which is most common in adolescents and young adults. The carbohydrate-targeting vectors and Pt scaffold are linked using copper-catalysed azide-alkyne cycloaddition (CuAAC) chemistry, which is synonymous with mild and robust reaction conditions. The novel complexes are characterised using multinuclear 1D-2D NMR (1H, 13C and 195Pt), IR, HR-MS, Elem. Analyses, and CV. Cytotoxicity on 2D and 3D and cell morphology studies on OS cell lines, as well as non-cancerous human foetal osteoblasts (hFOBs), are discussed.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Coordination Complexes , Osteosarcoma , Prodrugs , Humans , Adolescent , Cisplatin/therapeutic use , Cell Line, Tumor , Antineoplastic Agents/chemistry , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Platinum/chemistry , Prodrugs/chemistry , Coordination Complexes/chemistry , Bone Neoplasms/drug therapy , Carbohydrates
4.
Talanta ; 238(Pt 2): 123039, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801896

ABSTRACT

The overall aim of the work was to advance electrochemical devices capable of analysis of forensically relevant residues using rapid electrochemical sensor technology. In order to achieve this, electrochemical detection of the propellant stabiliser diphenylamine (DPA) was achieved via voltammetry with signal enhancement realised in the presence of iron oxide nanoparticle modified transducers. This allowed both mechanistic and analytical evaluation with the aim to achieve the required selectivity and sensitivity for reliable detection. DPA electrochemistry was examined at glassy carbon electrodes in aqueous (3:7 methanol: sodium acetate pH 4.3) electrolyte via potential sweeping, with an irreversible wave at Ep = 0.67 V vs. Ag/AgCl. The diffusion coefficient (D) for the oxidation process was calculated as 1.43 × 10-6 cm2 s-1 with αna = 0.7. DPA electrochemistry in a non aqueous methanol/acetonitrile electrolyte resulted in a D value of 5.47 × 10-8 cm2 s-1 with αna = 0.5. Electrochemical preparation of magnetic iron oxide nanoparticles was achieved via electrooxidation of an iron anode in the presence of an amine surfactant followed by characterisation with SEM/EDX, XRD, FTIR and thermal analysis. A surface confined layer of these magnetic nanoparticles served to positively influence the response to DPA while impeding formation of surface confined oxidation products, with generation of an improved analytical signal - sensitivity 1.13× 10-3 A cm-2 mM-1 relative to bare electrode response (9.80 × 10-4 A cm-2 mM-1) over the range 0.5-50 µM DPA using differential pulse voltammetry, with LOD 3.51 × 10-6 M and LOQ 1.17 × 10-5 M. Real sample analysis involved recovery and differential pulse voltammetry of unburnt and burnt gunshot residue with DPA qualitative and quantitative analysis.


Subject(s)
Diphenylamine , Magnetite Nanoparticles , Carbon , Electrochemistry , Electrodes
5.
Anal Methods ; 13(39): 4674-4682, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34549730

ABSTRACT

The development of an accurate, sensitive and selective sensor for the detection of bisphenol A (BPA) based on the incorporation of a new phthalocyanine derivative, cobalt phthalocyanine, C,C,C,C-tetracarboxylic acid-polyacrylamide (CoPc-PAA) into a carbon-paste matrix is presented using voltammetry and constant potential techniques. The influence of measuring parameters such as pH and scan rate on the analytical performance of the sensor was evaluated. Several kinetic parameters such as electron transfer number (n), charge transfer coefficient (α), electrode surface area (A) and diffusion coefficient (D) were also calculated. Under optimum conditions, particularly at pH 7.2, the BPA sensor resulted in a wide linear range from 25 × 10-11 M to 2.5 × 10-7 M and a limit of detection as low as 63.5 pM. Based on these findings, it can be concluded that our sensor can be substantially utilized for detecting BPA in spiked milk samples.


Subject(s)
Carbon , Electrochemical Techniques , Benzhydryl Compounds , Electrodes , Indoles , Limit of Detection , Organometallic Compounds , Phenols
6.
Biosensors (Basel) ; 11(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34436056

ABSTRACT

Here, we present an evaluation of two new monosubstituted ferrocene (Fc) derivatives, 3-(1H-pyrrol-1-yl)propanamidoferrocene and 1-hydroxy-2-[2-(thiophen-3-yl)-ethylamino]ethylferrocene, as glutamate oxidase mediators, together with their preparation and characterisation. Taking into consideration the influence of the electronic effects of substituents on the redox potentials of the Fc species, two candidates with pyrrole or thiophene moieties were proposed for investigation. Film studies involved potential sweeping in the presence of pyrrole or 3,4-ethylenedioxythiophene monomers resulting in stable electroactive films with % signal loss upon cycling ranging from 1 to 7.82% and surface coverage (Γ) 0.47-1.15 × 10-9 mol/cm2 for films formed under optimal conditions. Construction of a glutamate oxidase modified electrode resulted in second-generation biosensing with the aid of both cyclic voltammetry and hydrodynamic amperometry, resulting in glutamate sensitivity of 0.86-1.28 µA/mM and Km (app) values over the range 3.67-5.01 mM. A follow-up enzyme assay for liver biomarker γ-glutamyl transpeptidase realised unmediated and mediated measurement establishing reaction and incubation time investigations and a realising response over <100 U/L γ-glutamyl transpeptidase with a sensitivity of 5 nA/UL-1.


Subject(s)
Biosensing Techniques , Glutamic Acid , Biomarkers , Liver , Metallocenes , Pyrroles , Thiophenes , gamma-Glutamyltransferase
7.
Analyst ; 145(22): 7267-7278, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33163999

ABSTRACT

A robust electrochemical assay for sorbitol dehydrogenase (SORDH) activity in milk was developed using voltammetry and chronocoulometry at bare and polymer modified transducers. The motivation for the work was to evaluate the potential of SORDH as an early biomarker of bovine pregnancy using milk as sample matrix. SORDH is an enzyme involved in carbohydrate metabolism converting sorbitol, the sugar alcohol form of glucose, into fructose, with NAD+ as a cofactor being simultaneously reduced to NADH. The assay was optimised via direct NADH oxidation on glassy carbon and screen printed carbon electrodes followed by electropolymerisation of 3,4-ethylenedioxythiophene (EDOT) monomer to form an NADH responsive PEDOT surface which operated well in undiluted milk samples. Assay conditions such as incubation time and temperature were optimised resulting in a 3 min assay at 37 °C in the presence of 10 mM NAD+ and 20 mM sorbitol co-substrates, enabling NADH electro oxidation (linear range 0.25-5 mM, sensitivity 9.17 µC cm-2 mM-1 in undiluted milk). SORDH determination followed over the range 0.31-10 U mL-1 in milk samples with sensitivity 5.45 µC cm-2 U-1 mL with LOD 0.0787 U mL-1. The assay was applied to milk sample testing acquired as part of an approved animal study involving control and breeding cycles of dairy cows with focus on analysis at day 19 post artificial insemination. Significant differences between control and pregnant SORDH levels in whole milk animal samples were found (average values 2.57 and 4.07 ng mL-1 respectively), as verified using a commercial SORDH ELISA optical assay. Finally, progesterone monitoring over days 16-21 of the oestrous cycle employed an optical ELISA assay and confirmed maintenance of progesterone levels from day 19 onwards.


Subject(s)
L-Iditol 2-Dehydrogenase , Milk , Pregnancy, Animal , Animals , Biomarkers , Bridged Bicyclo Compounds, Heterocyclic , Cattle , Electrodes , Female , Polymers , Pregnancy , Progesterone
8.
Anal Methods ; 12(31): 3883-3891, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32716418

ABSTRACT

A silver nanoparticle and copper monoamino-phthalocyanine-acrylate (Cu-MAPA) polymer modified glassy carbon electrode was developed for the simultaneous detection of dopamine (DOP), ascorbic acid (AA) and uric acid (UA) using voltammetric techniques. Silver nanoparticles (AgNPs) were synthesised according to the citrate reduction method. Following synthesis and characterisation the copper phthalocyanine polymer was co-deposited with AgNPs realising a surface with enhanced electron transfer which lowered the overpotential required for analyte electro-oxidation. Differential pulse voltammetry (DPV) was employed for the simultaneous determination of dopamine (DOP), ascorbic acid (AA) and uric acid (UA) at AgNP/Cu-MAPA modified surfaces at <µM ranges. The peak potential separations for DOP-AA and DOP-UA were ca. 181 mV and 168 mV respectively. The chemical sensor was also capable of individual quantitation of DOP, UA and AA with detection limits of 0.7, 2.5 and 5.0 nM respectively. Overall, the approach realised a simple and effective electrode modifier for the selective discrimination and quantitation of DOP in the presence of physiological levels of AA and UA.


Subject(s)
Metal Nanoparticles , Uric Acid , Acrylates , Ascorbic Acid , Copper , Dopamine , Electrochemistry , Indoles , Organometallic Compounds , Polymers , Silver
9.
Mikrochim Acta ; 187(4): 225, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170399

ABSTRACT

Synthesis and functionalization of magnetite nanoparticles (Fe3O4) was achieved with the view to covalently bind both cholesterol oxidase and cholesterol esterase biorecognition agents for the development of free and total cholesterol biosensors. Prior to enzyme attachment, Fe3O4 was functionalized with 3-aminopropyltriethoxysilane (APTES) and polyamidoamine (PAMAM) dendrimer. Characterization of the material was performed by FT-IR and UV spectroscopy, SEM/EDX surface analysis and electrochemical investigations. The response to cholesterol and its palmitate ester was examined using cyclic voltammetry. Optimum analytical performance for the free cholesterol biosensor was obtained using APTES-functionalized magnetite with a sensitivity of 101.9 µA mM-1 cm-2, linear range 0.1-1 mM and LOD of 80 µM when operated at 37 °C. In the case of the total cholesterol biosensor, the best analytical performance was obtained using PAMAM dendrimer-modified magnetite with sensitivity of 73.88 µA mM-1 cm-2 and linear range 0.1-1.5 mM, with LOD of 90 µM. A stability study indicated that the free cholesterol biosensors retained average activity of 98% after 25 days while the total cholesterol biosensors retained 85% activity upon storage over the same period. Graphical abstract Schematic representation of cholesterol esterase and oxidase loaded magnetic nanoparticles (Fe3O4@APTES or Fe3O4@APTES-PAMAM) generating hydrogen peroxide from cholesterol palmitate.


Subject(s)
Biosensing Techniques , Cholesterol Esters/analysis , Cholesterol/analysis , Electrochemical Techniques , Magnetite Nanoparticles/chemistry , Cholesterol/metabolism , Cholesterol Esters/metabolism , Cholesterol Oxidase/chemistry , Cholesterol Oxidase/metabolism , Humans , Molecular Structure , Sterol Esterase/chemistry , Sterol Esterase/metabolism
10.
RSC Adv ; 10(53): 31740-31747, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-35518173

ABSTRACT

In this study, the (5,10,15,20-tetrakis[(4-methoxyphenyl)]porphyrinato)cadmium(ii) complex ([Cd(TMPP)]) was successfully used as a modifier in a carbon paste electrode (CPE) and exploited for bisphenol A (BPA) detection. Analytical performance revealed two linear ranges from 0.0015-15 µM and 0.015-1.5 mM with a detection limit of 13.5 pM. The proposed method was implemented in water samples, which resulted in quantitative signals over the range 6.5-1000 µM with recoveries between 92.6 and 107.7% for tap water and between 96.6 to 106.0% for mineral water.

11.
J Biol Inorg Chem ; 25(1): 49-60, 2020 02.
Article in English | MEDLINE | ID: mdl-31655896

ABSTRACT

Four estrogen-functionalised copper complexes were synthesised and investigated as electrochemical active DNA binding and cleavage agents. These complexes strategically contain a biocompatible metal centre [Cu(II)], a planar aromatic ligand as DNA intercalative agent and an estradiol-derivative moiety which acts as delivery vector to target estrogen-receptor-positive (ER+) cancer cells. Cytotoxic activity was studied over a panel of estrogen-receptor-positive (ER+) and negative (ER-) human cancer cell lines by means of both 2D and 3D cell viability studies. The complexes showed high in vitro intercalative interaction with nuclear DNA and demonstrated to be strong DNA cleaving agents. This series of Cu compounds are potent anticancer agents with low and sub-micromolar IC50 values and the cellular uptake follows the lipophilicity order meaning that the internalisation mainly happened via passive diffusion. Finally, the estrogen-complexes are involved in the cellular redox stress by stimulating the production of ROS (reactive oxygen species).


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , DNA/metabolism , Estrogens/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemistry , Humans , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism
12.
Biosens Bioelectron ; 150: 111876, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31748195

ABSTRACT

Preparation and electrochemical interrogation of a novel redox active progesterone derivative progesterone thiosemicarbazone (PATC) is presented here together with an investigation into its suitability as conjugate in progesterone hormone immunosensing. PATC synthesis involved a condensation reaction between progesterone acetate and thiosemicarbazone hydrochloride. Voltammetric and pulse techniques confirmed the redox behaviour of the new compound with concentration and scan rate dependant irreversible behaviour evident at glassy carbon and gold transducers - ko (standard heterogeneous rate constant) was 2.56 × 10-3 cm2/s (ν = 100 mV/s in non-aqeuous media). Bioaffinity studies towards anti-progesterone antibodies involved a competitive ELISA format (optical) which confirmed recognition of the new progesterone derivative. Electrochemical impedance spectroscopy was employed as an interrogation technique in order to establish optimum binding and surface conditions for progesterone antigen-antibody interaction with the assistance of a redox probe (potassium hexacyanoferrate).


Subject(s)
Antibodies, Immobilized/chemistry , Biosensing Techniques/methods , Progesterone/analysis , Carbon/chemistry , Dielectric Spectroscopy/methods , Enzyme-Linked Immunosorbent Assay , Ferricyanides/chemistry , Gold/chemistry , Immunoassay/methods , Oxidation-Reduction , Progesterone/analogs & derivatives , Transducers
13.
Analyst ; 144(19): 5748-5754, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31432061

ABSTRACT

A sensitive electrochemical immunoassay (e-ELISA) has been developed for the detection of the gastrointestinal parasitic nematode Ostertagia ostertagi (brown stomach worm) in infected and control serum samples. An antigen-indirect immunoassay format was employed to detect the presence of O. ostertagi antibodies, coupled with an anti-species monoclonal horseradish peroxidase (HRP) conjugate. ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) and TMB (3,3',5,5'-tetramethylbenzidine/hydrogen peroxide) were investigated as both chromogenic visualising reagents for optical ELISA and electroactive substrates for electrochemical ELISA in the HRP catalysed oxidation reaction. Coulometry was applied for the detection of O. ostertagi antibodies (via TMB electrochemistry) and compared with the commercial optical ELISA (ABTS based SVANOVIR® O. ostertagi-Ab ELISA kit). Cost-effective in-house sensors were designed and fabricated using polyester and chemical adhesive materials with the aid of stencil printing and laser machining techniques. The performance of the electrochemical ELISA and sensor was evaluated by investigating redox mediators (ABTS vs. TMB), stop solutions (sodium dodecyl sulfate vs. sulfuric acid) and incubation times (150 min vs. 70 min vs. 25 min). For a total assay incubation time of 70 minutes, the TMB/H2SO4 based e-ELISA was able to differentiate between positive (P) and negative (N) control serum samples, with a P/N70 control ratio 1.6 times higher than that of optical ELISA (TMB/H2SO4 combination) and 2.9 times higher than that of the commercial ELISA kit (ABTS/SDS combination). Furthermore, the e-ELISA approach is quicker and required only 25 min (total incubation time) with even better response (P/N25 = 14.7), which is approximately 4-fold higher than the optical immunoassay (P/N25 = 3.8). The proposed e-ELISA is specific (selective Ab-Ag interactions) and highly sensitive - capable of detecting up to 16-fold dilutions of a positive control serum sample. The electrochemical ELISA approach has the potential for rapid sample screening in a portable, disposable format, contributing to the quest for effective prevention and control of parasitic Ostertagia ostertagi infections in cattle.


Subject(s)
Antibodies, Helminth/blood , Cattle Diseases/diagnosis , Electrochemical Techniques/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Ostertagiasis/veterinary , Animals , Benzidines/chemistry , Benzothiazoles/chemistry , Cattle , Cattle Diseases/parasitology , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/methods , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Immunoglobulin G/chemistry , Ostertagia , Ostertagiasis/diagnosis , Ostertagiasis/parasitology , Sulfonic Acids/chemistry
14.
Biosens Bioelectron ; 137: 15-24, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31077986

ABSTRACT

Herein we report the use of scanning electrochemical microscopy (SECM) together with electrochemical and spectroscopic techniques to develop and characterise a stable and uniformly reactive chemically modified platinum electrode for NADH electrocatalysis. In order to achieve this, a range of different approaches for thionine entrapment within an electropolymerised poly (3,4-ethylendioxythiophene) (PEDOT) film were evaluated using SECM imaging in the presence of NADH, demonstrating the uniformity of the reactive layer towards NADH oxidation. The effect of electrolyte type and time scale employed during PEDOT electropolymerisation was examined with respect to thionine loading and the resulting charge transport diffusion coefficient (DCT) estimated via chronoamperometry. These studies indicated a decrease in DCT as thionine loading increased within the PEDOT film, suggesting that charge transport was diffusion limited within the film. Additionally, thionine functionalised nanotubes were formed, providing a stable support for lactate dehydrogenase entrapment while lowering the rate of thionine leaching, determined via SECM imaging. This enabled lactate determination at Eapp = 0.0 V vs Ag/AgCl over the range 0.25-5 mM in the presence of 1 mM NAD+.


Subject(s)
Biosensing Techniques , Catalysis , Lactic Acid/isolation & purification , L-Lactate Dehydrogenase/chemistry , Lactic Acid/chemistry , Microscopy, Electrochemical, Scanning , NAD/chemistry , Oxidation-Reduction , Polymers/chemistry
15.
Anal Chim Acta ; 1057: 98-105, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30832923

ABSTRACT

In this work, a novel sensor based on immobilised copper phthalocyanine, 2,9,16,23-tetracarboxylic acid-polyacrylamide (Cu(II)TC Pc-PAA) was developed for determination of acid phosphatase (ACP) levels in nanomolar quantities. Detection was based on the measurement of enzymatically generated phosphate, with initial studies focused on phosphate detection at a Cu(II)TC Pc-PAA modified screen-printed gold transducer. The sensor was characterised in relation to operational performance (pH, response time, stability, linearity, and sensitivity) and common anionic interferents (nitrate, sulphate, chloride, and perchlorate). The functionalised surface also facilitated rapid detection of the enzyme bi-product 2-naphthol over the range 5-3000 µM. Quantitation of ACP was demonstrated, realising a linear response range of 0.5-20 nM and LOD of 0.5 nM, which is within the clinical range for this prostate cancer biomarker.


Subject(s)
Acid Phosphatase/analysis , Biomarkers, Tumor/analysis , Gold/chemistry , Indoles/chemistry , Organometallic Compounds/chemistry , Printing , Prostatic Neoplasms/metabolism , Transducers , Electrochemistry , Electrodes , Humans , Hydrogen-Ion Concentration , Limit of Detection , Male , Perchlorates/chemistry , Surface Properties , Time Factors
16.
Mikrochim Acta ; 185(9): 412, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30105543

ABSTRACT

The authors describe a method for simultaneous voltammetric determination of 5-hydroxytryptamine (serotonin; 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). A glassy carbon electrode was modified with poly(pyrrole-3-carboxylic acid) and with platinised carbon nanofibers to obtain a sensor that can quantify 5-HT and 5-HIAA with detection limits of 10 nM and 20 nM, respectively. The peak currents, best measured at voltages of 170 mV and 500 mV (vs. Ag/AgCl) for 5-HT and 5-HIAA, increase linearly in the 0.01-100 µM concentration range for both analytes. The method was successfully applied to the quantitation of 5-HT and 5-HIAA in spiked artificial urine samples, and the sensor can be used up to 10 days. Graphical abstract A new electroanalytical device was developed for separation and quantitation of 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA), based on stripping square wave voltammetry, exploiting conducting polymer surfaces on platinised carbon nanofiber supports.

17.
ACS Sens ; 2(1): 165-171, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28722443

ABSTRACT

Recent studies have suggested that certain nanomaterials can interfere with optically based cytotoxicity assays resulting in underestimations of nanomaterial toxicity. As a result there has been growing interest in the use of whole cell electrochemical biosensors for nanotoxicity applications. Herein we report application of an electrochemical cytotoxicity assay developed in house (TOXOR) in the evaluation of toxic effects of mercaptosuccinic acid capped cadmium telluride quantum dots (MSA capped CdTe QDs), toward mammalian cells. MSA capped CdTe QDs were synthesized, characterized, and their cytotoxicity toward A549 human lung epithelial cells investigated. The internalization of QDs within cells was scrutinized via confocal microscopy. The cytotoxicity assay is based on the measurement of changes in cellular enzyme acid phosphatase upon 24 h exposure to QDs. Acid phosphatase catalyzes dephosphorylation of 2-naphthyl phosphate to 2-naphthol (determined by chronocoulometry) and is indicative of metabolic activity in cells. The 24 h IC50 (concentration resulting in 50% reduction in acid phosphatase activity) value for MSA capped CdTe QDs was found to be 118 ± 49 µg/mL using the TOXOR assay and was in agreement with the MTT assay (157 ± 31 µg/mL). Potential uses of this electrochemical assay include the screening of nanomaterials, environmental toxins, in addition to applications in the pharmaceutical, food, and health sectors.

18.
Nanoscale ; 5(21): 10219-25, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24061929

ABSTRACT

Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.


Subject(s)
Biosensing Techniques/instrumentation , DNA, Viral/analysis , Electrochemical Techniques/instrumentation , Microarray Analysis , Animals , Birds/virology , Electrodes , Gold/chemistry , Influenza A Virus, H5N1 Subtype/genetics , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry
19.
Analyst ; 137(7): 1639-48, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22343820

ABSTRACT

A highly efficient and reproducible approach for effective Pt nanoparticles dispersion and excellent decoration (inside/outside) of functionalised carbon nanofibers (f-CNF) is presented. The surface morphological, compositional and structural characterisations of the synthesised Pt(19.2)/f-CNF(80.8) material were examined using transmission electron microscopy (TEM/STEM/DF-STEM), energy-dispersive X-ray spectrometry (EDS), thermogravimetric analysis (TGA/DTG), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) was employed in order to confirm the typical electrochemical response for Pt. The aim of the work was to improve the utility of both the supporting matrix (via the use of both inner/outer surfaces of nanofibers) and precious Pt, together with the sensitive glucose determination. TEM data indicated successful nanoparticle decoration with average Pt particle size 2.4 nm. The studies demonstrated that utilisation of the inner surface of the nanofibers, together with the modified outer surface characteristics using chemical treatment, enables excellent decoration, effective dispersion and efficient impregnation of Pt nanoparticles on carbon nanofibers. Pt(19.2)/f-CNF(80.8) exhibited excellent amperometric response (sensitivity = 22.7 µAmM(-1)cm(-2) and LoD = 0.42 µM) towards direct glucose sensing, over the range 0-10 mM glucose, in neutral conditions (pH 7.4). The improved carbon surface area for nanoparticle decoration, inner surface structure and morphology of nanofibers together with the presence of functional groups provided strong interactions and stability. These features together with the effective nanoparticle dispersion and decoration resulted in excellent catalytic response. The decorated nanoscaled material (Pt(19.2)/f-CNF(80.8)) is capable of large scale production, providing sensing capability in neutral conditions, while eliminating the temperature sensitivity, pH and lifetime issues associated with glucose enzymatic sensors and holds great promise in the quantification of glucose in real clinical samples.


Subject(s)
Carbon/chemistry , Chemistry Techniques, Analytical/methods , Glucose/analysis , Nanofibers/chemistry , Nanoparticles/chemistry , Platinum/chemistry , Electrochemistry/methods , Enzyme Assays , Glucose/chemistry , Microscopy, Electron, Transmission , Particle Size , Sensitivity and Specificity , Surface Properties , X-Ray Diffraction
20.
Nanoscale ; 3(8): 3334-49, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21717025

ABSTRACT

Pt based mono/bi/tri-metallic nanocomposites on different carbon based supports (activated carbon (AC), carbon nanotubes (CNTs) and carbon nanofibers (CNFs)) were synthesised and Pt surface enrichment achieved. The overall theoretical metallic content (Pt + Au + Sn) was 20% (w/w) in all mono/bi/tri-metallic nanocomposites and was found to be uniformly distributed in the supporting matrix (80%). The surface morphology and composition of the synthesised materials was characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while cyclic voltammetry was employed in order to confirm their typical metallic electrochemical characteristics. Electrochemical measurements indicated that Pt(2)Au(1)Sn(1) trimetallic catalysts demonstrated a significantly higher electrochemically active surface area relative to activated carbon supported PtAu based bimetallic counterparts. The results show that the CNT based trimetallic catalyst (Pt(2)Au(1)Sn(1)/CNT) showed greatest electroactive surface area (49.3 m(2)/g) and current density for methanol oxidation in acidic (490 mA mg(-1) Pt) as well as basic (1700 mA mg(-1) Pt) conditions. Results demonstrated that in comparison to Au/C and Sn/C (no/negligible response), the presence of a small amount of Pt in the Au and Sn based nanocomposites, significantly modified the catalytic properties. The activated carbon supported bimetallic (Pt(1)Au(3)/C) catalyst showed reasonably good response (260 mA mg(-1) Pt) among all bimetallic nanomaterials examined. The current response achieved for Pt(2)Au(1)Sn(1)/CNT was 1.9 times (in acidic media) and 2.1 times (in basic media) that for synthesised Pt/C in terms of per mg Pt activity. Overall the methanol oxidation studies demonstrated that the presence of Au and Sn in Pt based catalysts strongly indicated their capacity to reduce the precious Pt content required for this application, demonstrating the role of Au in improving current/potential response and signifying the importance of supporting matrices.


Subject(s)
Carbon/chemistry , Electrochemical Techniques/methods , Methanol/chemistry , Nanocomposites/chemistry , Platinum/chemistry , Catalysis , Electrochemistry , Gold/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron , Oxidation-Reduction , Particle Size , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis , Thermogravimetry , Tin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL