Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 23(1): 11-25, 2023 01.
Article in English | MEDLINE | ID: mdl-36695612

ABSTRACT

Ischemia/reperfusion injury (IRI) is prone to occur after kidney transplantation, leading to delayed graft function (DGF). MicroRNAs play a crucial role in the pathogenesis of ischemia/reperfusion-induced acute kidney injury, and miR-20a-5p was found to be the most significantly upregulated gene in a DGF patient cohort. However, the roles of microRNAs in transplanted kidneys remain largely unknown. In this study, we found that miR-20a-5p was upregulated in the kidneys of acute kidney injury mice and in patients with DGF. We identified early growth response-1 as a critical upstream target and verified the binding of early growth response-1 to a predicted sequence in the promoter region of the miR-20a-5p gene. Functionally, the miR-20a-5p mimic attenuated IRI and postischemic renal fibrosis, whereas the miR-20a-5p inhibitor delivery aggravated IRI and fibrosis. Importantly, delivery of the miR-20a-5p mimic or inhibitor in the donor kidneys attenuated or aggravated renal loss and structural damage in cold storage transplantation injury. Furthermore, our study identified miR-20a-5p as a negative regulator of acyl-CoA synthetase long-chain family member 4 (ACSL4) by targeting the 3' untranslated region of ACSL4 mRNA, thereby inhibiting ACSL4-dependent ferroptosis. Our results suggest a potential therapeutic application of miR-20a-5p in kidney transplantation through the inhibition of ACSL4-dependent ferroptosis.


Subject(s)
Acute Kidney Injury , Ferroptosis , MicroRNAs , Reperfusion Injury , Animals , Mice , MicroRNAs/genetics , Kidney/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , Acute Kidney Injury/genetics , Ischemia , Coenzyme A Ligases/genetics
2.
Cells ; 11(24)2022 12 07.
Article in English | MEDLINE | ID: mdl-36552715

ABSTRACT

Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in renal disorders, including UUO-induced fibrotic kidneys and rhabdomyolysis-induced nephropathy. However, the role of HDAC6 in ischemic acute kidney injury (AKI) and the mechanism by which HDAC6 inhibition protects tubular cells after AKI remain unclear. In the present study, we observed that HDAC6 was markedly activated in kidneys subjected to ischemia- and cisplatin (cis)-induced AKI treatment. Pharmacological inhibition of HDAC6 alleviated renal impairment and renal tubular damage after ischemia and cisplatin treatment. HDAC6 dysfunction was associated with decreased acetylation of α-tubulin at the residue of lysine 40 and autophagy. HDAC6 inhibition preserved acetyl-α-tubulin-enhanced autophagy flux in AKI and cultured tubular cells. Genetic ablation of the renal tubular (RT) Atg7 gene or pharmacological inhibition of autophagy suppressed the protective effects of HDAC6. Taken together, our study indicates that HDAC6 contributes to ischemia- and cisplatin-induced AKI by inhibiting autophagy and the acetylation of α-tubulin. These results suggest that HDAC6 could be a potential target for ischemic and nephrotoxic AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Histone Deacetylase 6 , Ischemia , Humans , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Autophagy/genetics , Cisplatin/adverse effects , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Ischemia/genetics , Ischemia/metabolism , Tubulin/metabolism
3.
Int J Biol Sci ; 17(8): 2099-2111, 2021.
Article in English | MEDLINE | ID: mdl-34131409

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is one of the underlying causes of acute kidney injury and also an unavoidable problem in renal transplantation. Lots of miRNAs and targets have been found to participate in some post-transcriptional processes in renal IRI, however, the detailed knowledge of miRNA targets and mechanism is unknown. In this study, miR-124 was found inhibited and PARP1 was overexpressed in renal IRI cells and mouse models. Dual-luciferase reporter assay revealed that miR-124 post-transcriptionally regulated PAPR1 3'UTR activity. Our results also demonstrated miR-124 negatively regulated PARP1 which played a role in necroptosis of renal ischemia-reperfusion injury by activating TNFα. TNFα induced the RIP1/RIP3 necroptosis signaling pathway to aggravate the renal injury. Collectively, these studies identified PARP1 as a direct target of miR-124 and activated RIP1/RIP3 necroptosis signaling pathway through TNFα. It elucidated the protective effect of miR-124 in renal ischemia-reperfusion injury, which demonstrated the regulatory mechanism of miR-124/PARP1 in renal injury and exhibited the potential as a novel therapeutic for the treatment of renal IRI.


Subject(s)
Acute Kidney Injury/metabolism , Kidney , MicroRNAs/metabolism , Peroxidases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Humans , Kidney/blood supply , Kidney/metabolism , Kidney Transplantation/adverse effects , Mice , Protective Factors , RNA Processing, Post-Transcriptional , Reperfusion Injury/complications , Reperfusion Injury/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...