Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
Front Microbiol ; 15: 1455008, 2024.
Article in English | MEDLINE | ID: mdl-39282559

ABSTRACT

Background: Botrytis cinerea a blueberry gray mold, is one of the main diseases affecting postharvest storage, causing significant losses. Several studies have shown that Bacillus tequilensis can prevent the growth of plant pathogens by producing various antibacterial substances, and can induce plant resistance. However, research on the biological management of post-harvest gray mold in blueberries using B. tequilensis remains unclear. Methods: To better control the postharvest gray mold of blueberry, the effects of B. tequilensis KXF6501 fermentation solution (YY) and KXF6501 cell-free supernatant (SQ) on the induction of disease resistance in blueberry fruits were studied using biochemical and transcriptomic analyses. Results: We found that YY controlled the conidial germination and mycelial growth of B. cinerea in vitro, followed by SQ. After 3 d of culture, the lesion diameter and incidence of gray mold in blueberry fruits inoculated with YY and SQ were smaller than those in the control group. Therefore, gray mold in blueberries was effectively controlled during the prevention period, and the control effect of YY was better than that of SQ. Transcription spectrum analysis of blueberry peel tissue showed that the YY- and SQ-induced phenylpropane metabolic pathways had more differentially expressed genes (DEGs) than other biological pathways. In addition, biochemical analyses showed that YY treatment effectively enhanced the activity of enzymes related to the phenylpropane pathway (phenylalanine ammonialyase [PAL], cinnamate 4-hydroxylase [C4H], 4-coumarate CoA ligase [4CL], and polyphenol oxidase [PPO]) and stimulated the synthesis of lignin, total phenols, and flavonoids, followed by SQ. Compared with the control, the YY and SQ treatments reduced the weight loss rate and better maintained the appearance and nutritional quality of the blueberry fruits. Conclusion: Our findings suggest that B. tequilensis KXF6501 is potentially useful as a suitable bio-control agent in harvested blueberries.

2.
Heliyon ; 10(18): e37338, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309789

ABSTRACT

Due to significant anatomical variations in medical images across different cases, medical image segmentation is a highly challenging task. Convolutional neural networks have shown faster and more accurate performance in medical image segmentation. However, existing networks for medical image segmentation mostly rely on independent training of the model using data samples and loss functions, lacking interactive training and feedback mechanisms. This leads to a relatively singular training approach for the models, and furthermore, some networks can only perform segmentation for specific diseases. In this paper, we propose a causal relationship-based generative medical image segmentation model named GU-Net. We integrate a counterfactual attention mechanism combined with CBAM into the decoder of U-Net as a generative network, and then combine it with a GAN network where the discriminator is used for backpropagation. This enables alternate optimization and training between the generative network and discriminator, enhancing the expressive and learning capabilities of the network model to output prediction segmentation results closer to the ground truth. Additionally, the interaction and transmission of information help the network model capture richer feature representations, extract more accurate features, reduce overfitting, and improve model stability and robustness through feedback mechanisms. Experimental results demonstrate that our proposed GU-Net network achieves better segmentation performance not only in cases with abundant data samples and relatively simple segmentation targets or high contrast between the target and background regions but also in scenarios with limited data samples and challenging segmentation tasks. Comparing with existing U-Net networks with attention mechanisms, GU-Net consistently improves Dice scores by 1.19%, 2.93%, 5.01%, and 5.50% on ISIC 2016, ISIC 2017, ISIC 2018, and Gland Segmentation datasets, respectively.

3.
Eur J Nutr ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294335

ABSTRACT

PURPOSE: The objective of this study is to investigate the impact of ferroptosis on depression and elucidate the molecular mechanism underlying melatonin's inhibitory effect on ferroptosis in the treatment of depression. METHODS: In this study, a depression-like behavior model was induced in mice using LPS, and the effect of melatonin on depression-like behavior was evaluated through behavioral experiments (such as forced swimming test (FST) and sucrose preference test (SPT)). Additionally, molecular biological techniques (including real-time fluorescence quantitative PCR, Western blotting, immunoprecipitation) were employed to detect the expression levels and interactions of METTL3, SIRT6 and ferroptosis-related genes in mouse brain tissue. Furthermore, both in vitro and in vivo experiments were conducted to verify the regulatory effect of melatonin on Nrf2/HO-1 pathway and explore its potential molecular mechanism for regulating ferroptosis. RESULTS: Melatonin was found to significantly ameliorate depression-like behavior in mice, as evidenced by reduced immobility time in the forced swimming test and increased sucrose intake in the sucrose preference test. Subsequent investigations revealed that melatonin modulated SIRT6 stability through METTL3-mediated ubiquitination of SIRT6, leading to its degradation. As a deacetylase, SIRT6 plays a pivotal role in cellular metabolism regulation and antioxidative stress response. This study elucidated potential signaling pathways involving Nrf2/HO-1 through which SIRT6 may exert its effects. CONCLUSION: The findings suggest that melatonin can improve depressive behavior by suppressing ferroptosis and protecting neurons through its antioxidant properties. Additionally, targeting the Nrf2/HO-1 pathway via METTL3 and NEDD4 regulation may be a potential therapeutic approach for depression.

4.
BMC Cancer ; 24(1): 1190, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333978

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have become the recommended first-line treatment for advanced non-small cell lung cancer (NSCLC) without driver gene mutations. However, data on the failure patterns of first-line ICIs monotherapy is limited, and the optimal strategy for subsequent treatment remains controversial. METHODS: Advanced NSCLC patients receiving first-line ICIs monotherapy at Guangdong Lung Cancer Institute between December 2017 and October 2021 were identified. The progressive sites were recorded to analyze failure patterns. Post-progression survival (PPS) was compared between different treatment regimens. RESULTS: A total of 121 patients receiving first-line ICIs monotherapy were identified, with a median progression-free survival of 8.6 months. Sixty-five patients had available imaging at diagnosis as well as progressive disease, with 56.9% showing oligoprogression. For those with progression in existing lesions, the most common sites were the liver (77.8%) and lung parenchyma (62.5%), while progression with new lesions frequently occurred in the liver (32.0%). Fifty patients with recorded subsequent treatment were included in the analysis of subsequent treatment patterns. Patients treated with anti-angiogenesis therapy could get better PPS (HR: 0.275, P = 0.013). Isolated oligoprogression occurred most often in the lung parenchyma and intracranial lesions. More than half of these patients continued immunotherapy after local treatment, with a 2.5-year PPS rate of 51.4%. CONCLUSION: The liver was the most common site of progression on first-line ICIs monotherapy. Anti-angiogenesis-based therapy might be an optimal regimen at the time of progression. Patients with isolated oligoprogressive could still benefit from immunotherapy after local treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Disease Progression , Immune Checkpoint Inhibitors , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Male , Female , Retrospective Studies , Middle Aged , Aged , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Adult , Treatment Failure , Progression-Free Survival , Aged, 80 and over
5.
Food Chem ; 463(Pt 2): 141291, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39303466

ABSTRACT

In recent years, the biocompatibility and environmental friendliness of xylan-based materials have demonstrated great potential in the field of food packaging and coatings. In this study, the cationized xylan based composite coating (CXC) was developed using a hybrid system of cationic-modified bamboo xylan (CMX) and sodium alginate (SA) combined with thyme oil microcapsules (TM). The optimized CXC-B was composed of 1.27 % TM, 2.42 % CMX (CMX: SA = 3:2), and 96.31 % distilled water. When applied to the surface of a blueberry, the CXC-B treatment extended the ambient storage time of the fruit to 10 days while substantially reducing its morbidity (P < 0.05) and protecting its texture, flavor, and nutritional integrity. The resulting composite coating provides a promising solution to the problem of blueberry perishability during ambient storage.

6.
Chemosphere ; 364: 143021, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111676

ABSTRACT

Molybdenum disulfide (MoS2) is heralded as an exemplary two-dimensional (2D) functional material, largely attributed to its distinctive layered structure. Upon forming heterojunctions with reducing species, MoS2 displays remarkable photocatalytic properties. In this research, we fabricated a novel heterojunction photocatalyst, FeS/MoS2-0.05, through the integration of FeS with hollow MoS2. This composite aims at the efficient photocatalytic reduction of hexavalent chromium (Cr(VI)). A comprehensive array of characterization techniques unveiled that MoS2 flakes, dispersed on FeS, provide numerous active sites for photocatalysis at the heterojunction interface. The inclusion of FeS seemingly promotes the formation of sulfur vacancies on MoS2. Consequently, this heterojunction catalyst exhibits photocatalytic activity surpassing pristine MoS2 by a factor of 3.77. The augmented activity of the FeS/MoS2-0.05 catalyst is attributed chiefly to an internal electric field at the interface. This field enhances the facilitation of charge transfer and separation significantly. Density functional theory (DFT) calculations, coupled with experimental analyses, corroborate this observation. Additionally, DFT calculations indicate that sulfur vacancies act as pivotal sites for Cr(VI) adsorption. Significantly, the adsorption energy of Cr(VI) species shows enhanced favorability under acidic conditions. Our results suggest that the FeS/MoS2-0.05 heterojunction photocatalyst presents substantial potential for the remediation of Cr(VI)-contaminated wastewater.


Subject(s)
Chromium , Disulfides , Molybdenum , Sulfur , Molybdenum/chemistry , Chromium/chemistry , Disulfides/chemistry , Catalysis , Sulfur/chemistry , Adsorption , Photochemical Processes , Water Pollutants, Chemical/chemistry
7.
Clin Cosmet Investig Dermatol ; 17: 1887-1893, 2024.
Article in English | MEDLINE | ID: mdl-39193095

ABSTRACT

Objective: To assess the accuracy of HSV1and HSV2 antibody testing in identifying genital herpes infection. Methods: A cohort of 299 patients previously diagnosed with recurrent genital herpes, confirmed via PCR, were tested using ELISA for HSV1 and HSV2 IgM and IgG antibodies. The study compared the accuracy of HSV1 and HSV2 antibody tests in diagnosing genital herpes. Results: Among 299 patients, 14 tested positives for HSV1 DNA. Of these, 9 had HSV1 IgG antibodies, but none had HSV2 IgG antibody. Among 278 patients with HSV2 DNA, 149 had HSV1 IgG, 9 had HSV2 IgG, and 97 had both. Seven patients had both HSV1 and HSV2 DNA; 3 had HSV1 IgG, 1 had HSV2 IgG, and 3 had both. The accuracy of HSV1 IgG for HSV1 infection was 64.2%, and for HSV1 and HSV2 co-infection, 85.7%. The accuracy of HSV2 IgG for HSV2 infection was 38.1%, and for HSV1 and HSV2 co-infection, 57.1%. The combined antibody positivity accuracy was 34.9%. Conclusion: Genital herpes is primarily caused by HSV2 (92.98%). A smaller percentage is HSV1 (4.67%) or co-infection (2.34%). Despite relatively low diagnostic accuracy (34.9-85.7%) for antibody detection, combined antibody testing is necessary. Herpes DNA testing is recommended for accurate diagnosis. Absence of antibodies does not rule out genital herpes and clinical assessment is essential.

8.
Carbohydr Polym ; 343: 122489, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174141

ABSTRACT

The clinical utility of chemotherapy is often compromised by its limited efficacy and significant side effects. Addressing these concerns, we have developed a self-assembled nanomicelle, namely SANTA FE OXA, which consists of hyaluronic acid (HA) conjugated with ferrocene methanol (FC), oxaliplatin prodrug (OXA(IV)) and ethylene glycol-coupled linoleic acid (EG-LA). Targeted delivery is achieved by HA binding to the CD44 receptors that are overexpressed on tumor cells, facilitating drug uptake. Once internalized, hyaluronidase (HAase) catalyzes the digestion of the SANTA FE OXA, releasing FC and reducing OXA(IV) into an active form. The active oxaliplatin (OXA) induces DNA damage and increases intracellular hydrogen peroxide (H2O2) levels via cascade reactions. Simultaneously, FC disrupts the redox balance within tumor cells, inducing ferroptosis. Both in vivo and in vitro experiments confirmed that SANTA FE OXA inhibited tumor growth by combining cascade chemotherapy and self-sensitized ferroptosis, achieving a tumor inhibition rate of up to 76.61 %. Moreover, this SANTA FE OXA significantly mitigates the systemic toxicity commonly associated with platinum-based chemotherapeutics. Our findings represent a compelling advancement in nanomedicine for enhanced cascade cancer therapy.


Subject(s)
Antineoplastic Agents , Ferroptosis , Ferrous Compounds , Hyaluronic Acid , Micelles , Oxaliplatin , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Ferroptosis/drug effects , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice , Cell Line, Tumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Metallocenes/chemistry , Metallocenes/pharmacology , Prodrugs/pharmacology , Prodrugs/chemistry , Linoleic Acid/chemistry , Linoleic Acid/pharmacology , Mice, Inbred BALB C , Female , Mice, Nude , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Neoplasms/drug therapy
9.
Heliyon ; 10(15): e35556, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170193

ABSTRACT

Oxidative stress and its impact on aging are critical areas of research. Natural anti-oxidants, such as saponins found in Polygonatum sibiricum, hold promise as potential clinical interventions against aging. In this study, we utilized the nematode model organism, Caenorhabditis elegans, to investigate the pharmacological effects of Polygonatum sibiricum saponins (PKS) on antioxidation and anti-aging. The results demonstrated a significant anti-aging biological activity associated with PKS. Through experiments involving lifespan and stress, lipofuscin, q-PCR, and ROS measurement, we found that PKS effectively mitigated aging-related processes. Furthermore, the mechanism underlying these anti-aging effects was linked to the SKN-1 signaling pathway. PKS increased the nuclear localization of the SKN-1 transcription factor, leading to the up-regulation of downstream anti-oxidant genes, such as gst-4 and sod-3, and a substantial reduction in intracellular ROS levels within the nematode. In conclusion, our study sheds light on the anti-oxidant and anti-aging properties of PKS in C. elegans. This research not only contributes to understanding the biological mechanisms involved but also highlights the potential therapeutic applications of these natural compounds in combating aging-related processes.

10.
BMC Med Genomics ; 17(1): 216, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160503

ABSTRACT

BACKGROUND: There is growing evidence for a relationship between gut microbiota and hepatic encephalopathy (HE). However, the causal nature of the relationship between gut microbiota and HE has not been thoroughly investigated. METHOD: This study utilized the large-scale genome-wide association studies (GWAS) summary statistics to evaluate the causal association between gut microbiota and HE risk. Specifically, two-sample Mendelian randomization (MR) approach was used to identify the causal microbial taxa for HE. The inverse variance weighted (IVW) method was used as the primary MR analysis. Sensitive analyses were performed to validate the robustness of the results. RESULTS: The IVW method revealed that the genus Bifidobacterium (OR = 0.363, 95% CI: 0.139-0.943, P = 0.037), the family Bifidobacteriaceae (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039), and the order Bifidobacteriales (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039) were negatively associated with HE. However, no causal relationship was observed among them after the Bonferroni correction test. Neither heterogeneity nor horizontal pleiotropy was found in the sensitivity analysis. CONCLUSION: Our MR study demonstrated a potential causal association between Bifidobacterium, Bifidobacteriaceae, and Bifidobacteriales and HE. This finding may provide new therapeutic targets for patients at risk of HE in the future.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Hepatic Encephalopathy , Mendelian Randomization Analysis , Humans , Hepatic Encephalopathy/genetics , Hepatic Encephalopathy/microbiology , Bifidobacterium/genetics
11.
Acta Histochem ; 126(5-7): 152189, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39197328

ABSTRACT

Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.


Subject(s)
Acute Lung Injury , Burns , Exosomes , Ferroptosis , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Umbilical Cord , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Humans , Burns/complications , Burns/metabolism , Rats , Umbilical Cord/cytology , Male , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Iron/metabolism
12.
Biomed Environ Sci ; 37(7): 754-761, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39198239

ABSTRACT

Objective: To explore the effectiveness of a nutritional intervention in rescuers who screened positive for depression. Methods: A randomized controlled trial design was employed. From June to August, 2022, 4,460 rescuers were screened using the Self-Rating Depression Scale (SDS), and 1,615 positive cases were identified. Thirty-one volunteers were recruited and randomly divided into a nutritional intervention group and a control group. The intervention group received health education and nutritional intervention (a compound paste therapy primarily composed of red roses and Seville orange flowers), while the control group received psychological education. SDS scores were assessed before and after the intervention. Results: There was a statistically significant decline in SDS scores in the nutritional intervention group after the intervention ( P < 0.05). Furthermore, the SDS scores of the intervention group were significantly lower than those of the control group, both before and after the intervention ( P < 0.05). No severe adverse reactions were observed during safety evaluation. Conclusion: The nutritional intervention effectively reduced the depression scores in rescuers. Early nutritional intervention is recommended for rescuers who initially screen positive for depression.


Subject(s)
Depression , Humans , Female , Male , Adult , Depression/therapy , Depression/diet therapy , Middle Aged , Young Adult
13.
Sleep Med Rev ; 78: 101989, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39153335

ABSTRACT

Habitual daytime napping is a common behavioral and lifestyle practice in particular countries and is often considered part of a normal daily routine. However, recent evidence suggests that the health effects of habitual daytime napping are controversial. We systematically searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to March 9, 2024, to synthesize cohort studies of napping and health outcome risk. A total of 44 cohort studies with 1,864,274 subjects aged 20-86 years (mean age 56.4 years) were included. Overall, habitual napping increased the risk of several adverse health outcomes, including all-cause mortality, cardiovascular disease, metabolic disease, and cancer, and decreased the risk of cognitive impairment and sarcopenia. Individuals with a napping duration of 30 min or longer exhibited a higher risk of all-cause mortality, cardiovascular disease, and metabolic disease, whereas those with napping durations less than 30 min had no significant risks. No significant differences in napping and health risks were observed for napping frequency, percentage of nappers, sample size, sex, age, body mass index, follow-up years, or comorbidity status. These findings indicate that individuals with a long napping duration should consider shortening their daily nap duration to 30 min or less.

14.
Mil Med Res ; 11(1): 53, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118131

ABSTRACT

Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.


Subject(s)
DNA Damage , RNA, Small Nucleolar , RNA, Small Nucleolar/genetics , DNA Damage/physiology , Humans , Genomic Instability
15.
Adv Sci (Weinh) ; 11(33): e2402152, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38946585

ABSTRACT

Post-stroke depression is a common complication that imposes significant burdens and challenges on patients. The occurrence of depression is often associated with frontal lobe hemorrhage, however, current understanding of the underlying mechanisms remains limited. Here, the pathogenic mechanisms associated with the circuitry connectivity, electrophysiological alterations, and molecular characteristics are investigated related to the frontal lobe in adult male mice following unilateral injection of blood in the medial prefrontal cortex (mPFC). It is demonstrated that depression is a specific neurological complication in the unilateral hematoma model of the mPFC, and the ventral tegmental area (VTA) shows a higher percentage of connectivity disruption compared to the lateral habenula (LHb) and striatum (STR). Additionally, long-range projections originating from the frontal lobe demonstrate higher damage percentages within the connections between each region and the mPFC. mPFC neurons reveal reduced neuronal excitability and altered synaptic communication. Furthermore, transcriptomic analysis identifies the involvement of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and targeting the JAK-STAT pathway significantly alleviates the severity of depressive symptoms. These findings improve the understanding of post-hemorrhagic depression and may guide the development of efficient treatments.


Subject(s)
Depression , Disease Models, Animal , Janus Kinases , Signal Transduction , Stroke , Animals , Mice , Male , Depression/metabolism , Depression/etiology , Depression/physiopathology , Stroke/metabolism , Stroke/complications , Janus Kinases/metabolism , Frontal Lobe/metabolism , Frontal Lobe/physiopathology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Mice, Inbred C57BL , Prefrontal Cortex/metabolism
16.
Int Immunopharmacol ; 138: 112653, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38996664

ABSTRACT

As one of the main pathmechanisms of Alzheimer's disease (AD), amyloid-ß (Aß) is widely considered to be the prime target for the development of AD therapy. Recently, imidazolylacetophenone oxime ethers or esters (IOEs) have shown neuroprotective effects against neuronal cells damage, suggesting their potential use in the prevention and treatment of AD. Thirty IOEs compounds from our lab in-house library were constructed and screened for the inhibitory effects on Aß42-induced cytotoxicity. Among them, TJ1, as a new IOEs hit, preliminarily showed the effect on inhibiting Aß42-induced cytotoxicity. Furthermore, the inhibitory effects of TJ1 on Aß42 aggregation were tested by ThT assays and TEM. The neuroprotective effects of TJ1 were evaluated in Aß42-stimulated SH-SY5Y cells, LPS-stimulated BV-2 cells, and H2O2- and RSL3-stimulated PC12 cells. The cognitive improvement of TJ1 was assessed in 5xFAD (C57BL/6J) transgenic mouse. These results showed that TJ1 had strong neuroprotective effects and high blood-brain barrier (BBB) permeability without obvious cytotoxicity. TJ1 impeded the self-accumulation process of Aß42 by acting on Aß oligomerization and fibrilization. Besides, TJ1 reversed Aß-, H2O2- and RSL3-induced neuronal cell damage and decreased neuroinflammation. In 5xFAD mice, TJ1 improved cognitive impairment, increased GSH level, reduced the level of Aß42 and Aß plaques, and attenuated the glia reactivation and inflammatory response in the brain,. Taken together, our results demonstrate that TJ1 improves cognitive impairments as a new neuroprotective candidate via targeting amyloidogenesis, which suggests the potential of TJ1 as a treatment for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Neuroprotective Agents , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Humans , Mice , Rats , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Peptide Fragments/metabolism , PC12 Cells , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oximes/pharmacology , Oximes/therapeutic use , Cell Line, Tumor , Male
17.
Plant Physiol Biochem ; 214: 108912, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972241

ABSTRACT

Bacillus tequilensis DZY 6715 was isolated from healthy leaves in Camellia oleifera, and the strain DZY 6715 significantly inhibited anthracnose disease resulting from Colletotrichum fructicola in C. oleifera, besides, its associated mechanism of disease resistance was explored. B. tequilensis DZY 6715 treatment controlled mycelial growth of C. fructicola in C. oleifera, and significantly decreased C. oleifera anthracnose incidence and disease index compared with the control group. B. tequilensis DZY 6715 has strong biofilm forming ability, and also secretes extracellular ß-1, 3-glucanase and chitinase, which could cause cell membranes damage and increased cellular compound leakage. C.oleifera treated with DZY 6715 also effectively enhanced enzyme activities and stimulated the synthesis the substances related to phenylpropane metabolism and reactive oxygen metabolism. Moreover, transcript profiling analysis revealed more differentially expressed genes related to phenylpropanoid pathway metabolism and antioxidant system inducing by DZY 6715 compared with the control in C. oleifera. Thus, it can be concluded that B. tequilensis DZY 6715 is a suitable bio-control agent to control anthracnose disease in C. oleifera.


Subject(s)
Bacillus , Camellia , Colletotrichum , Plant Diseases , Colletotrichum/physiology , Camellia/microbiology , Camellia/genetics , Plant Diseases/microbiology , Bacillus/physiology , Bacillus/genetics , Disease Resistance/genetics , Gene Expression Profiling , Transcriptome
18.
Zool Res ; 45(4): 833-844, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39004861

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus (PRRSV), resulting in substantial economic losses in the swine industry. Modifying the CD163 SRCR5 domain, either through deletion or substitution, can eff1ectively confer resistance to PRRSV infection in pigs. However, large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance. Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs. In the current study, we identified a specific functional amino acid in CD163 that influences PRRSV proliferation. Viral infection experiments conducted on Marc145 and PK-15 CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV (HP-PRRSV) proliferation by preventing viral binding and entry. Furthermore, individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type (WT) pigs, confirming effective resistance to HP-PRRSV. Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs. These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs, providing novel insights into controlling future PRRSV outbreaks.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Point Mutation , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Receptors, Cell Surface , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Animals, Genetically Modified/genetics , Cell Line
19.
Waste Manag ; 187: 79-90, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38996622

ABSTRACT

Feed management decisions are crucial in mitigating greenhouse gas (GHG) and nitrogen (N) emissions from ruminant farming systems. However, assessing the downstream impact of diet on emissions in dairy production systems is complex, due to the multifunctional relationships between a variety of distinct but interconnected sources such as animals, housing, manure storage, and soil. Therefore, there is a need for an integral assessment of the direct and indirect GHG and N emissions that considers the underlying processes of carbon (C), N and their drivers within the system. Here we show the relevance of using a cascade of process-based (PB) models, such as Dutch Tier 3 and (Manure)-DNDC (Denitrification-Decomposition) models, for capturing the downstream influence of diet on whole-farm emissions in two contrasting case study dairy farms: a confinement system in Germany and a pasture-based system in New Zealand. Considerable variation was found in emissions on a per hectare and per head basis, and across different farm components and categories of animals. Moreover, the confinement system had a farm C emission of 1.01 kg CO2-eq kg-1 fat and protein corrected milk (FPCM), and a farm N emission of 0.0300 kg N kg-1 FPCM. In contrast, the pasture-based system had a lower farm C and N emission averaging 0.82 kg CO2-eq kg-1 FPCM and 0.006 kg N kg-1 FPCM, respectively over the 4-year period. The results demonstrate how inputs and outputs could be made compatible and exchangeable across the PB models for quantifying dietary effects on whole-farm GHG and N emissions.


Subject(s)
Dairying , Diet , Greenhouse Gases , Manure , Nitrogen , Animals , Greenhouse Gases/analysis , Dairying/methods , Manure/analysis , Cattle , Nitrogen/analysis , New Zealand , Germany , Models, Theoretical , Farms , Air Pollutants/analysis
20.
J Agric Food Chem ; 72(31): 17356-17367, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042602

ABSTRACT

Inhibition of oxidative stress and ferroptosis is currently considered to be a promising therapeutic approach for neurodegenerative diseases. Herpotrichones, a class of compounds derived from insect symbionts, have shown potential for neuroprotective activity with low toxicity. However, the specific mechanisms through which herpotrichones exert their neuroprotective effects remain to be fully elucidated. In this study, the natural [4 + 2] adducts herpotrichone A (He-A) and its new analogues were isolated from the isopod-associated fungus Herpotrichia sp. SF09 and exhibited significantly protective effects in H2O2-, 6-OHDA-, and RSL3-stimulated PC12 cells and LPS-stimulated BV-2 cells. Moreover, He-A was able to relieve ferroptotic cell death in RSL3-stimulated PC12 cells and 6-OHDA-induced zebrafish larvae. Interestingly, He-A can activate antioxidant elements and modulate the SLC7A11 pathway without capturing oxidic free radical and chelating iron. These findings highlight He-A as a novel hit that protects against ferroptosis-like neuronal damage in the treatment of neurodegenerative diseases.


Subject(s)
Ferroptosis , Neuroprotective Agents , Oxidative Stress , Zebrafish , Animals , Ferroptosis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Rats , Oxidative Stress/drug effects , PC12 Cells , Isopoda/drug effects , Isopoda/chemistry , Humans , Neurons/drug effects , Neurons/metabolism , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Larva/drug effects , Larva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL