Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
Front Microbiol ; 15: 1366336, 2024.
Article in English | MEDLINE | ID: mdl-39113837

ABSTRACT

Streptomycetes are well-known antibiotic producers possessing in their genomes numerous silent biosynthetic pathways that might direct the biosynthesis of novel bio-active specialized metabolites. It is thus of great interest to find ways to enhance the expression of these pathways to discover most needed novel antibiotics. In this study, we demonstrated that the over-expression of acetyltransferase SCO0988 up-regulated the production of specialized metabolites and accelerated sporulation of the weak antibiotic producer, Streptomyces lividans and that the deletion of this gene had opposite effects in the strong antibiotic producer, Streptomyces coelicolor. The comparative analysis of the acetylome of a S. lividans strain over-expressing sco0988 with that of the original strain revealed that SCO0988 acetylates a broad range of proteins of various pathways including BldKB/SCO5113, the extracellular solute-binding protein of an ABC-transporter involved in the up-take of a signal oligopeptide of the quorum sensing pathway. The up-take of this oligopeptide triggers the "bald cascade" that regulates positively specialized metabolism, aerial mycelium formation and sporulation in S. coelicolor. Interestingly, BldKB/SCO5113 was over-acetylated on four Lysine residues, including Lys425, upon SCO0988 over-expression. The bald phenotype of a bldKB mutant could be complemented by native bldKB but not by variant of bldKB in which the Lys425 was replaced by arginine, an amino acid that could not be acetylated or by glutamine, an amino acid that is expected to mimic acetylated lysine. Our study demonstrated that Lys425 was a critical residue for BldKB function but was inconclusive concerning the impact of acetylation of Lys425 on BldKB function.

2.
J Exp Bot ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140865

ABSTRACT

Capsanthin and capsorubin are red κ-xanthophylls exclusively found in a handful of other plant species. Currently, capsanthin and capsorubin are only extracted from red pepper. Here, high purity production of capsanthin and capsorubin has been achieved in carrot taproot by synthetic metabolic engineering strategy. Expression of a capsanthin-capsorubin synthase gene (CaCCS) from pepper resulted in dominant production of capsanthin whereas expression of a LiCCS gene from tiger lily resulted in production of both capsanthin and capsorubin in carrot taproot. The highest content of capsanthin and capsorubin was obtained in LiC-1 carrot taproot hosting the LiCCS gene, 150.09 µg/g DW (dry weight). Co-expression of DcBCH1 with CCS could improve the purity of capsanthin and capsorubin by eliminating the non-target carotenoids (eg. α-carotene and ß-carotene). The highest purity of capsanthin and capsorubin was obtained in BLiC-1 carrot taproot hosting DcBCH1+LiCCS genes, 91.10% of total carotenoids. The non-native pigments were esterified partially and stored in the globular chromoplast of carrot taproot. Our results demonstrated the possibility of employing carrot taproot as green factories for high purity production of capsanthin and capsorubin. The capsanthin/capsorubin carrot germplasms were also valuable materials for breeding colorful carrots cultivars.

3.
Trop Anim Health Prod ; 56(7): 233, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096351

ABSTRACT

Mosquitoes (Diptera: Culicidae) are one of the most studied groups of arthropods worldwide due to their high transmission capacity for pathogens, including viruses and parasites. During June to October 2022, the prevalence of mosquito species in 12 intensive pig farms from 12 representative administrative regions in Hunan province of China was investigated using traps with ultraviolet light. All collected mosquitoes were counted and identified to species according to morphological and molecular methods. A total of 4,443 mosquito specimens were collected in the pig farms, and they represented one family, four genera and nine species. Culex pipiens pipiens (24%) was the most common mosquito species, followed by Armigeres subalbatus (23.4%) and Culex tritaeniorhynchus (20.6%). Phylogenetic analyses based on mitochondrial cox1 sequences revealed all mosquito species from present study grouping into distinct monophyletic groups corresponding to nine known mosquito species with strongly supported. The results of the present investigation have implications for the ongoing control of mosquito infestation in pig farms in Hunan province, China. This is the first report of mosquito populations in intensive pig farms in Hunan province, China.


Subject(s)
Culicidae , Phylogeny , Animals , China/epidemiology , Culicidae/physiology , Culicidae/classification , Swine , Farms , Animal Husbandry , Sus scrofa
4.
Chempluschem ; : e202400336, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987227

ABSTRACT

With the escalating demand and utilization of plastics, considerable attention has been given to controlling plastic pollution. Among these methodologies, photocatalytic upcycling of plastic has emerged as a promising method for plastic management due to its energy-saving and eco-friendly properties. In the past several years, great efforts have been devoted to the photocatalytic conversion of a variety of commercial plastic types. These encouraging endeavors foreshadow the continued progression and application in this field. In this review, recent advancements in the photocatalytic upcycling of plastics are reviewed. The fundamentals and principles of photocatalytic deconstruction of plastics are first introduced. Then, we summarize the works on the reforming of different types of plastic, including polyolefins, polyesters, and other types. Finally, some challenges and possible solutions are provided for the development of photocatalytic upcycling of plastics.

5.
Arch Dermatol Res ; 316(7): 468, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002062

ABSTRACT

Epidermal Growth Factor Receptor Inhibitors (EGFRIs) is a common cancer therapy, but they occasionally cause severe side effects such as xerosis. Tiansha mixture (TM), a traditional Chinese medicines formulation, is develpoed to treat xerosis. This study aims to understand mechanisms of TM on xerosis. Bio-active compounds were selected from databases (TCMSP, TCM-ID, HERB, ETCM) and removed for poor oral bioavailability and low drug likeness. Then a network-based approach filtered out potential active compounds against xerosis. KEGG enrichment analysis identified PI3K/AKT and ERK/MAPK pathways, which were further verified by molecular docking. Afterwards, the effect of TM on activation of PI3K/AKT and ERK/MAPK pathways was validated in gefitinib-induced xerosis rats, where AKT-activator SC79 and MAPK-activator CrPic were also applied. Skin damage was assessed by dorsal score and HE and Tunel stainings. the levels of inflammation factors IL-6 and TNF-α in serum and skin tissue were measured by ELISA. Western blot was used to detect protein levels in the pathways. Network pharmacology identified 111 bio-active compounds from TM and 14 potential targets. Docking simulation showed apigenin, luteolin, and quercetin bio-active compounds in TM bound to IKBKG, INSR, and RAF-1 proteins. In xerosis model rats, TM mitigated xerosis damage, decreased inflammation factors, and phosphorylation of PI3K/AKT and ERK/MAPK proteins. SC79 or CrPic or their combination reversed TM's effect. The current study identified potential targets and PI3K/AKT and ERK/MAPK pathways involved in the effect of TM on xerosis, thus providing a foundation for TM clinical application.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Animals , Network Pharmacology/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Rats , Disease Models, Animal , Humans , Proto-Oncogene Proteins c-akt/metabolism , Male , Skin/drug effects , Skin/pathology , Signal Transduction/drug effects , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System/drug effects , Interleukin-6/metabolism
6.
Plant Physiol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046113

ABSTRACT

Many organisms have complex pigmentation patterns. However, how these patterns are formed remains largely unknown. In wild carrot (Daucus carota subsp. carota), which is also known as Queen Anne's lace, one or several purple central flowers occur in white umbels. Here, we investigated the unique central flower pigmentation pattern in wild carrot umbels. Using wild and cultivated carrot (Daucus carota subsp. sativus L.) accessions, transcriptome analysis, protein interaction, stable transformation, and CRISPR/Cas9-mediated knockout, a anthocyanin-activating R2R3-myeloblastosis (MYB) gene, Purple Central Flower (DcPCF), was identified as the causal gene that triggers only central flowers to possess the purple phenotype. The expression of DcPCF was only detected in tiny central flowers. We propose that the transition from purple to nonpurple flowers in the center of the umbel occurred after three separate adverse events: insertion of transposons in the promoter region, premature termination of the coding sequence (caused by a C-T substitution in the open reading frame), and the emergence of unknown anthocyanin suppressors. These three events could have occurred either consecutively or independently. The intriguing purple central flower pattern and its underlying mechanism may provide evidence that it is a remnant of ancient conditions of the species, reflecting the original appearance of Umbelliferae (also called Apiaceae) when a single flower was present.

7.
ACS Appl Mater Interfaces ; 16(27): 35815-35824, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935440

ABSTRACT

Micro thermoelectric devices are expected to further improve the cooling density for the temperature control of electronic devices; nevertheless, the high contact resistivity between metals and semiconductors critically limits their applications, especially in chip cooling with extremely high heat flux. Herein, based on the calculated results, a low specific contact resistivity of ∼10-7 Ω cm2 at the interface is required to guarantee a desirable cooling power density of micro devices. Thus, we developed a generally applicable interfacial modulation strategy via localized surface doping of thermoelectric films, and the feasibility of such a doping approach for both n/p-type (Bi,Sb)2Te3 films was demonstrated, which can effectively increase the surface-majority carrier concentration explained by the charge transfer mechanism. With a proper doping level, ultralow specific contact resistivities at the interfaces are obtained for n-type (6.71 × 10-8 Ω cm2) and p-type (3.70 × 10-7 Ω cm2) (Bi,Sb)2Te3 layers, respectively, which is mainly attributed to the carrier tunneling enhancement with a narrowed interfacial contact barrier width. This work provides an effective scheme to further reduce the internal resistance of micro thermoelectric coolers, which can also be extended as a kind of universal interfacial modification technique for micro semiconductor devices.

8.
Sci Total Environ ; 946: 173982, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38889816

ABSTRACT

Due to the urgent need for detecting trace amounts of 3,3',4,4'-tetrachlorobiphenyl (PCB77) in the environment, we have developed an efficient and visible-driven photoelectrochemical (PEC) sensing platform based on carbon quantum dots (CQDs) modified titanium dioxide nanorods (TiO2 NRs), coupling with exonuclease I (Exo I) assisted in target recycling for significant signal amplification. CQDs/TiO2 NRs with high visible-light absorption ability and electron-hole separation efficiency is used as photoactive substrate for anchoring anti-PCB77 aptamer and its complementary DNA (cDNA). With the addition of PCB77, the specific interaction between PCB77 and its aptamer forces aptamer to separate from the electrode surface, resulting in an increase in photocurrent density. Adding Exo I in the test system, a self-catalytic target cycle was motivated, which significantly increased the PEC signal by more than twice, achieving signal amplification. The relationship between the photocurrent density changes and the concentrations of PCB77 are utilized to achieve quantitative detection of PCB77. The designed PEC sensing platform has good analytical performance with a detection limit as low as 0.33 pg L-1, high selectivity and stability. Moreover, the PEC sensor is successfully used to evaluate the content of PBC77 in the environment samples. The established sensing platform provides a simple and efficient method for detecting trace amounts of PCB77 in the environment.

9.
Ren Fail ; 46(2): 2359033, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38836372

ABSTRACT

OBJECTIVE: To determine the efficacy and safety of Astragalus combined with renin-angiotensin-aldosterone system (RAAS) blockers in treating stage III diabetic nephropathy (DN) by meta-analysis. METHODS: PubMed, Embase, Cochrane Library, Wiley, and Web of Science databases were searched for articles published between August 2007 and August 2022. Clinical studies on Astragalus combined with RAAS blockers for the treatment of stage III DN were included. Meta-analysis was performed by RevMan 5.1 and Stata 14.3 software. RESULTS: A total of 32 papers were included in this meta-analysis, containing 2462 patients from randomized controlled trials, with 1244 receiving the combination treatment and 1218 solely receiving RAAS blockers. Astragalus combined with RAAS blockers yielded a significantly higher total effective rate (TER) (mean difference [MD] 3.63, 95% confidence interval [CI] 2.59-5.09) and significantly reduced urinary protein excretion rate (UPER), serum creatinine (Scr), blood urine nitrogen (BUN) and glycosylated hemoglobin (HbAlc) levels. In subgroup analysis, combining astragalus and angiotensin receptor blocker significantly lowered fasting plasma glucose (FPG) and 24 h urinary protein (24hUTP) levels, compared with the combined astragalus and angiotensin-converting enzyme inhibitor treatment. Meanwhile, the latter significantly decreased the urinary microprotein (ß2-MG). Importantly, the sensitivity analysis confirmed the study's stability, and publication bias was not detected for UPER, BUN, HbAlc, FPG, or ß2-MG. However, the TER, SCr, and 24hUTP results suggested possible publication bias. CONCLUSIONS: The astragalus-RAAS blocker combination treatment is safe and improves outcomes; however, rigorous randomized, large-scale, multi-center, double-blind trials are needed to evaluate its efficacy and safety in stage III DN.


Renin-angiotensin-aldosterone system (RAAS) inhibitors are commonly used to treat diabetic neuropathy (DN) and Astragalus membranaceus components are known to improve DN symptoms.We aimed to establish the efficacy and safety of using Astragalus combined with RAAS inhibitors.Astragalus combined with RAAS inhibitors enhances the total effective rate of diabetic neuropathy response to treatment and reduces urinary protein excretion rate, serum creatinine, blood urea nitrogen and HbAlc.Sensitivity analysis affirms study stability, while publication bias was detected for total effective rate, serum creatinine, and 24 h urinary protein levels.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Diabetic Nephropathies , Drug Therapy, Combination , Renin-Angiotensin System , Humans , Diabetic Nephropathies/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Astragalus Plant , Randomized Controlled Trials as Topic , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Treatment Outcome , Creatinine/blood , Glycated Hemoglobin , Proteinuria/drug therapy
10.
J Phys Chem Lett ; 15(23): 6108-6114, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38829304

ABSTRACT

Two-dimensional metal-organic networks (2D MONs) having heterogeneous coordination nodes (HCNs) could exhibit excellent performance in catalysis and optoelectronics because of the unbalanced electron distribution of the coordinating metals. Therefore, the design and construction of 2D MONs with HCNs are highly desirable but remain challenging. Here, we report the construction of 2D organometallic coordination networks with an organic Kagome lattice and a semiregular metal lattice on Au(111) via the in situ formation of HCNs. Using a bifunctional precursor 1,4-dibromo-2,5-diisocyanobenzene, the coordination of isocyano with Au adatom on a room-temperature Au(111) yielded metal-organic coordination chains with isocyano-Au-isocyano nodes. In contrast, on a high-temperature Au(111), a selective debromination/coordination cascade reaction occurred, affording 2D organometallic coordination networks with phenyl-Au-isocyano nodes. By combining scanning tunneling microscopy and density functional theory calculations, we determined the structures of coordination products and the nature of coordination nodes, demonstrating a thermodynamically favorable pathway for forming the phenyl-Au-isocyano nodes.

11.
Small Methods ; : e2400589, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934342

ABSTRACT

The evolutions of chip thermal management and micro energy harvesting put forward urgent need for micro thermoelectric devices. Nevertheless, low-performance thermoelectric thick films as well as the complicated precision cutting process for hundred-micron thermoelectric legs still remain the bottleneck hindering the advancement of micro thermoelectric devices. In this work, an innovative direct melt-calendaring manufacturing technology is first proposed with specially designed and assembled equipment, that enables direct, rapid, and cost-effective continuous manufacturing of Bi2Te3-based films with thickness of hundred microns. Based on the strain engineering with external glass coating confinement and controlled calendaring deformation degree, enhanced thermoelectric performance has been achieved for (Bi,Sb)2Te3 thick films with highly textured nanocrystals, which can promote carrier mobility over 182.6 cm2 V-1 s-1 and bring out a record-high zT value of 0.96 and 1.16 for n-type and p-type (Bi,Sb)2Te3 thick films, respectively. The nanoscale interfaces also further improve the mechanical strength with excellent elastic modules (over 42.0 GPa) and hardness (over 1.7 GPa), even superior to the commercial zone-melting ingots and comparable to the hot-extrusion (Bi,Sb)2Te3 alloys. This new fabrication strategy is versatile to a wide range of inorganic thermoelectric thick films, which lays a solid foundation for the development of micro thermoelectric devices.

12.
Respir Med ; 231: 107722, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936635

ABSTRACT

INTRODUCTION: Direct oral anticoagulants (DOACs) are increasingly prescribed for life-long anticoagulation in chronic thromboembolic pulmonary hypertension (CTEPH) patients, despite not being recommended in the guidelines. This study aims to evaluate the efficacy and safety of DOACs in CTEPH patients. METHODS: From May 2013 to December 2022, patients who were first diagnosed with CTEPH in Fuwai Hospital and started long-term anticoagulation treatment with warfarin or DOACs were retrospectively included and followed up until (1) death, (2) transition to other kinds of anticoagulants, or (3) discontinuation of anticoagulation. Propensity score matching was used to balance confounding bias of baseline characteristics. All-cause death, major bleeding, clinically relevant nonmajor bleeding and venous thromboembolism (VTE) recurrence were obtained and analysed. RESULTS: After propensity score matching, 115 patients taking warfarin and 206 patients taking DOACs were included in our study and followed up for 5.5 [3.4, 7.1] years. There was no significant difference of survival between the warfarin and the DOAC group (p = 0.77). The exposure adjusted event rate of major bleeding (0.3 %/person-year vs 0.4 %/person-year, p = 0.705) and clinically relevant nonmajor bleeding (3.1 %/person-year vs 3.2 %/person-year, p > 0.999) was similar between two groups. The exposure adjusted rate of VTE recurrence was significantly higher in the DOAC group (1.5 %/person-year vs 0.3 %/person-year, p = 0.030). CONCLUSION: In anticoagulation of CTEPH patients, DOACs have similar survival rate, similar risk of bleeding but higher risk of VTE recurrence than warfarin.


Subject(s)
Anticoagulants , Hemorrhage , Hypertension, Pulmonary , Pulmonary Embolism , Warfarin , Humans , Retrospective Studies , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/mortality , Male , Female , Warfarin/administration & dosage , Warfarin/adverse effects , Warfarin/therapeutic use , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Pulmonary Embolism/drug therapy , Pulmonary Embolism/complications , Pulmonary Embolism/mortality , Middle Aged , Aged , Administration, Oral , Chronic Disease , Hemorrhage/chemically induced , Recurrence , Treatment Outcome , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology , Propensity Score , Cohort Studies , Follow-Up Studies
13.
Microsyst Nanoeng ; 10: 70, 2024.
Article in English | MEDLINE | ID: mdl-38803351

ABSTRACT

The demand for optically transparent temperature sensors in intelligent devices is increasing. However, the performance of these sensors, particularly in terms of their sensitivity and resolution, must be further enhanced. This study introduces a novel transparent and highly sensitive temperature sensor characterized by its ultrathin, freestanding design based on a Mn-Co-Ni-O nanofilm. The Mn-Co-Ni-O-based sensor exhibits remarkable sensitivity, with a temperature coefficient of resistance of -4% °C-1, and can detect minuscule temperature fluctuations as small as 0.03 °C. Additionally, the freestanding sensor can be transferred onto any substrate for versatile application while maintaining robust structural stability and excellent resistance to interference, indicating its suitability for operation in challenging environments. Its practical utility in monitoring the surface temperature of optical devices is demonstrated through vertical integration of the sensor and a micro light-emitting diode on a polyimide substrate. Moreover, an experiment in which the sensor is implanted in rats confirms its favorable biocompatibility, highlighting the promising applications of the sensor in the biomedical domain.

14.
Front Microbiol ; 15: 1395583, 2024.
Article in English | MEDLINE | ID: mdl-38746754

ABSTRACT

Thermal pollution from the cooling system of the nuclear power plants greatly changes the environmental and the ecological conditions of the receiving marine water body, but we know little about their impact on the steady-state transition of marine bacterioplankton communities. In this study, we used high-throughput sequencing based on the 16S rRNA gene to investigate the impact of the thermal pollution on the bacterioplankton communities in a subtropical bay (the Daya Bay). We observed that thermal pollution from the cooling system of the nuclear power plant caused a pronounced thermal gradient ranging from 19.6°C to 24.12°C over the whole Daya Bay. A temperature difference of 4.5°C between the northern and southern parts of the bay led to a regime shift in the bacterioplankton community structure. In the three typical scenarios of regime shifts, the steady-state transition of bacterioplankton community structure in response to temperature increasing was more likely consistent with an abrupt regime shift rather than a smooth regime or a discontinuous regime model. Water temperature was a decisive factor on the regime shift of bacterioplankton community structure. High temperature significantly decreased bacterioplankton diversity and shifted its community compositions. Cyanobium and Synechococcus of Cyanobacteria, NS5 marine group of Bacteroidota, and Vibrio of Gammaproteobacteria were found that favored high temperature environments. Furthermore, the increased water temperature significantly altered the community assembly of bacterioplankton in Daya Bay, with a substantial decrease in the proportion of drift and others, and a marked increase in the proportion of homogeneous selection. In summary, we proposed that seawater temperature increasing induced by the thermal pollution resulted in an abrupt regime shift of bacterioplankton community in winter subtropical bay. Our research might broad our understanding of marine microbial ecology under future conditions of global warming.

15.
ACS Appl Mater Interfaces ; 16(20): 26643-26652, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716902

ABSTRACT

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

16.
J Multidiscip Healthc ; 17: 2371-2387, 2024.
Article in English | MEDLINE | ID: mdl-38770171

ABSTRACT

Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.

17.
Nat Commun ; 15(1): 3870, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719875

ABSTRACT

Micro-thermoelectric coolers are emerging as a promising solution for high-density cooling applications in confined spaces. Unlike thin-film micro-thermoelectric coolers with high cooling flux at the expense of cooling temperature difference due to very short thermoelectric legs, thick-film micro-thermoelectric coolers can achieve better comprehensive cooling performance. However, they still face significant challenges in both material preparation and device integration. Herein, we propose a design strategy which combines Bi2Te3-based thick film prepared by powder direct molding with micro-thermoelectric cooler integrated via phase-change batch transfer. Accurate thickness control and relatively high thermoelectric performance can be achieved for the thick film, and the high-density-integrated thick-film micro-thermoelectric cooler exhibits excellent performance with maximum cooling temperature difference of 40.6 K and maximum cooling flux of 56.5 W·cm-2 at room temperature. The micro-thermoelectric cooler also shows high temperature control accuracy (0.01 K) and reliability (over 30000 cooling cycles). Moreover, the device demonstrates remarkable capacity in power generation with normalized power density up to 214.0 µW · cm-2 · K-2. This study provides a general and scalable route for developing high-performance thick-film micro-thermoelectric cooler, benefiting widespread applications in thermal management of microsystems.

18.
Nat Commun ; 15(1): 3943, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729965

ABSTRACT

Ferroelectric materials have important applications in transduction, data storage, and nonlinear optics. Inorganic ferroelectrics such as lead zirconate titanate possess large polarization, though they are rigid and brittle. Ferroelectric polymers are light weight and flexible, yet their polarization is low, bottlenecked at 10 µC cm-2. Here we show poly(vinylidene fluoride) nanocomposite with only 0.94% of self-nucleated CH3NH3PbBr3 nanocrystals exhibits anomalously large polarization (~19.6 µC cm-2) while retaining superior stretchability and photoluminance, resulting in unprecedented electromechanical figures of merit among ferroelectrics. Comprehensive analysis suggests the enhancement is accomplished via delicate defect engineering, with field-induced Frenkel pairs in halide perovskite stabilized by the poled ferroelectric polymer through interfacial coupling. The strategy is general, working in poly(vinylidene fluoride-co-hexafluoropropylene) as well, and the nanocomposite is stable. The study thus presents a solution for overcoming the electromechanical dilemma of ferroelectrics while enabling additional optic-activity, ideal for multifunctional flexible electronics applications.

20.
J Agric Food Chem ; 72(22): 12582-12595, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788215

ABSTRACT

Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.


Subject(s)
Diet, High-Fat , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Polysaccharides , Animals , Lipogenesis/drug effects , Mice , Lipolysis/drug effects , Male , Diet, High-Fat/adverse effects , Humans , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Sirtuin 1/metabolism , Sirtuin 1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Camellia sinensis/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Tea/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL