Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 92(4): 1241-1256, 2023.
Article in English | MEDLINE | ID: mdl-36872774

ABSTRACT

BACKGROUND: Amyloid-ß protein precursor (AßPP) is enriched in neurons. However, the mechanism underlying AßPP regulation of neuronal activity is poorly understood. Potassium channels are critically involved in neuronal excitability. In hippocampus, A-type potassium channels are highly expressed and involved in determining neuronal spiking. OBJECTIVE: We explored hippocampal local field potential (LFP) and spiking in the presence and absence of AßPP, and the potential involvement of an A-type potassium channel. METHODS: We used in vivo extracellular recording and whole-cell patch-clamp recording to determine neuronal activity, current density of A-type potassium currents, and western blot to detect changes in related protein levels. RESULTS: Abnormal LFP was observed in AßPP-/- mice, including reduced beta and gamma power, and increased epsilon and ripple power. The firing rate of glutamatergic neurons reduced significantly, in line with an increased action potential rheobase. Given that A-type potassium channels regulate neuronal firing, we measured the protein levels and function of two major A-type potassium channels and found that the post-transcriptional level of Kv1.4, but not Kv4.2, was significantly increased in the AßPP-/- mice. This resulted in a marked increase in the peak time of A-type transient outward potassium currents in both glutamatergic and gamma-aminobutyric acid-ergic (GABAergic) neurons. Furthermore, a mechanistic experiment using human embryonic kidney 293 (HEK293) cells revealed that the AßPP deficiency-induced increase in Kv1.4 may not involve protein-protein interaction between AßPP and Kv1.4. CONCLUSION: This study suggests that AßPP modulates neuronal firing and oscillatory activity in the hippocampus, and Kv1.4 may be involved in mediating the modulation.


Subject(s)
Amyloid beta-Protein Precursor , Kv1.4 Potassium Channel , Potassium Channels , Animals , Humans , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , HEK293 Cells , Hippocampus/metabolism , Potassium , Potassium Channels/metabolism , Kv1.4 Potassium Channel/genetics , Kv1.4 Potassium Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...