Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177219

ABSTRACT

OBJECTIVE: There is currently scarce data on the electroclinical characteristics of epilepsy associated with synapsin 1 (SYN1) pathogenic variations. We examined clinical and electro-encephalographic (EEG) features in patients with epilepsy and SYN1 variants, with the aim of identifying a distinctive electroclinical pattern. METHODS: In this retrospective multicenter study, we collected and reviewed demographic, genetic, and epilepsy data of 19 male patients with SYN1 variants. Specifically, we analyzed interictal EEG data for all patients, and electro-clinical data from 10 epileptic seizures in 5 patients, using prolonged video-EEG monitoring recordings. Inter-ictal EEG functional connectivity parameters and frequency spectrum of the 10 patients over 12 years of age, were computed and compared with those of 56 age- and sex-matched controls. RESULTS: The main electroclinical features of epilepsy in patients with SYN1 were (1) EEG background and organization mainly normal; (2) interictal abnormalities are often rare or not visible on EEG; (3) more than 60% of patients had reflex seizures (cutaneous contact with water and defecation being the main triggers) isolated or associated with spontaneous seizures; (4) electro-clinical semiology of seizures was mainly temporal or temporo-insulo/perisylvian with a notable autonomic component; and (5) ictal EEG showed a characteristic rhythmic theta/delta activity predominating in temporo-perisylvian regions at the beginning of most seizures. Comparing patients with SYN1 to healthy subjects, we observed a shift to lower frequency bands in power spectrum of interictal EEG and an increased connectivity in both temporal regions. INTERPRETATION: A distinct epilepsy syndrome emerges in patients with SYN1, with a rather characteristic clinical and EEG pattern suggesting predominant temporo-insular involvement. ANN NEUROL 2024.

2.
Skelet Muscle ; 14(1): 15, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026379

ABSTRACT

BACKGROUND: TCF4 acts as a transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5 motif. Dominant variants in TCF4 are associated with the manifestation of Pitt-Hopkins syndrome, a rare disease characterized by severe mental retardation, certain features of facial dysmorphism and, in many cases, with abnormalities in respiratory rhythm (episodes of paroxysmal tachypnea and hyperventilation, followed by apnea and cyanosis). Frequently, patients also develop epilepsy, microcephaly, and postnatal short stature. Although TCF4 is expressed in skeletal muscle and TCF4 seems to play a role in myogenesis as demonstrated in mice, potential myopathological findings taking place upon the presence of dominant TCF4 variants are thus far not described in human skeletal muscle. METHOD: To address the pathological effect of a novel deletion affecting exons 15 and 16 of TCF4 on skeletal muscle, histological and immunofluorescence studies were carried out on a quadriceps biopsy in addition to targeted transcript studies and global proteomic profiling. RESULTS: We report on muscle biopsy findings from a Pitt-Hopkins patient with a novel heterozygous deletion spanning exon 15 and 16 presenting with neuromuscular symptoms. Microscopic characterization of the muscle biopsy revealed moderate fiber type I predominance, imbalance in the proportion of fibroblasts co-expressing Vimentin and CD90, and indicate activation of the complement cascade in TCF4-mutant muscle. Protein dysregulations were unraveled by proteomic profiling. Transcript studies confirmed a mitochondrial vulnerability in muscle and confirmed reduced TCF4 expression. CONCLUSION: Our combined findings, for the first time, unveil myopathological changes as phenotypical association of Pitt-Hopkins syndrome and thus expand the current clinical knowledge of the disease as well as support data obtained on skeletal muscle of a mouse model.


Subject(s)
Hyperventilation , Intellectual Disability , Transcription Factor 4 , Hyperventilation/genetics , Hyperventilation/metabolism , Hyperventilation/physiopathology , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Transcription Factor 4/genetics , Transcription Factor 4/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Facies , Child , Exons , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology
3.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38772379

ABSTRACT

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Subject(s)
Neurodevelopmental Disorders , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Epilepsy/genetics , Exome Sequencing , Genetic Diseases, X-Linked/genetics , Heterozygote , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Shal Potassium Channels/genetics
4.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38410936

ABSTRACT

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Seizures, Febrile , Status Epilepticus , Humans , Retrospective Studies , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsies, Myoclonic/genetics , Seizures, Febrile/genetics , Phenotype , Genetic Association Studies , Mutation/genetics
5.
Brain Commun ; 6(1): fcad273, 2024.
Article in English | MEDLINE | ID: mdl-38173802

ABSTRACT

Mutations in CLCN2 are a rare cause of autosomal recessive leucoencephalopathy with ataxia and specific imaging abnormalities. Very few cases have been reported to date. Here, we describe the clinical and imaging phenotype of 12 additional CLCN2 patients and expand the known phenotypic spectrum of this disorder. Informed consent was obtained for all patients. Patients underwent either whole-exome sequencing or focused/panel-based sequencing to identify variants. Twelve patients with biallelic CLCN2 variants are described. This includes three novel likely pathogenic missense variants. All patients demonstrated typical MRI changes, including hyperintensity on T2-weighted images in the posterior limbs of the internal capsules, midbrain cerebral peduncles, middle cerebellar peduncles and cerebral white matter. Clinical features included a variable combination of ataxia, headache, spasticity, seizures and other symptoms with a broad range of age of onset. This report is now the largest case series of patients with CLCN2-related leucoencephalopathy and reinforces the finding that, although the imaging appearance is uniform, the phenotypic expression of this disorder is highly heterogeneous. Our findings expand the phenotypic spectrum of CLCN2-related leucoencephalopathy by adding prominent seizures, severe spastic paraplegia and developmental delay.

6.
Med Genet ; 33(4): 311-318, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38835431

ABSTRACT

Familial adult myoclonic epilepsy (FAME) is a rare autosomal dominant disorder characterized by myoclonus and seizures. The genetic variant underlying FAME is an intronic repeat expansion composed of two different pentamers: an expanded TTTTA, which is the motif originally present at the locus, and an insertion of TTTCA repeats, which is usually located at the 3' end and likely corresponds to the pathogenic part of the expansion. This repeat expansion has been identified so far in six genes located on different chromosomes, which remarkably encode proteins with distinct cellular localizations and functions. Although the exact pathophysiological mechanisms remain to be clarified, it is likely that FAME repeat expansions lead to disease independently of the gene where they occur. We herein review the clinical and molecular characteristics of this singular genetic disorder, which interestingly shares clinical features with other more common neurological disorders whose etiology remains mainly unsolved.

7.
Med Genet ; 33(4): 291-292, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38835433
8.
Med Genet ; 33(4): 301-310, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38835435

ABSTRACT

The cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is a late-onset and recessively inherited ataxia. For many years, CANVAS has been diagnosed based on the clinical phenotype. Only recently, a large biallelic pentanucleotide repeat expansion in the replication factor C subunit 1 (RFC1) gene has been identified as the underlying genetic cause for the large majority of CANVAS cases. Subsequently, other phenotypes such as ataxia with chronic cough, incomplete CANVAS and MSA-C-like phenotypes have been associated with biallelic RFC1 repeat expansions. Because of this heterogeneity it has been suggested to change the name of the disease to "RFC1 disease". Chronic cough is characteristic and can precede neurological symptoms by years or decades. In the neurological examination signs of cerebellar, sensory, and vestibular ataxia are frequently observed. Nerve conduction studies usually show absent or markedly reduced sensory nerve action potentials. On brain MRI cerebellar degeneration and spinal cord alterations are common. In later disease stages more widespread neurodegeneration with additional involvement of the brainstem and basal ganglia is possible. As yet, the exact incidence of RFC1-associated neurological diseases remains uncertain although first studies suggest that RFC1-related ataxia is common. Moreover, the pathophysiological mechanisms caused by the large biallelic pentanucleotide repeat expansions in RFC1 remain elusive. Future molecular and genetic research as well as natural history studies are highly desirable to pave the way towards personalized treatment approaches.

9.
Med Genet ; 33(4): 325-335, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38835438

ABSTRACT

Noncoding repeat expansions are a well-known cause of genetic disorders mainly affecting the central nervous system. Missed by most standard technologies used in routine diagnosis, pathogenic noncoding repeat expansions have to be searched for using specific techniques such as repeat-primed PCR or specific bioinformatics tools applied to genome data, such as ExpansionHunter. In this review, we focus on GC-rich repeat expansions, which represent at least one third of all noncoding repeat expansions described so far. GC-rich expansions are mainly located in regulatory regions (promoter, 5' untranslated region, first intron) of genes and can lead to either a toxic gain-of-function mediated by RNA toxicity and/or repeat-associated non-AUG (RAN) translation, or a loss-of-function of the associated gene, depending on their size and their methylation status. We herein review the clinical and molecular characteristics of disorders associated with these difficult-to-detect expansions.

SELECTION OF CITATIONS
SEARCH DETAIL