Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(6): e14359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689502

ABSTRACT

PURPOSE: AAPM Task Group No. 263U1 (Update to Report No. 263 - Standardizing Nomenclatures in Radiation Oncology) disseminated a survey to receive feedback on utilization, gaps, and means to facilitate further adoption. METHODS: The survey was created by TG-263U1 members to solicit feedback from physicists, dosimetrists, and physicians working in radiation oncology. Questions on the adoption of the TG-263 standard were coupled with demographic information, such as clinical role, place of primary employment (e.g., private hospital, academic center), and size of institution. The survey was emailed to all AAPM, AAMD, and ASTRO members. RESULTS: The survey received 463 responses with 310 completed survey responses used for analysis, of whom most had the clinical role of medical physicist (73%) and the majority were from the United States (83%). There were 83% of respondents who indicated that they believe that having a nomenclature standard is important or very important and 61% had adopted all or portions of TG-263 in their clinics. For those yet to adopt TG-263, the staffing and implementation efforts were the main cause for delaying adoption. Fewer respondents had trouble adopting TG-263 for organs at risk (29%) versus target (44%) nomenclature. Common themes in written feedback were lack of physician support and available resources, especially in vendor systems, to facilitate adoption. CONCLUSIONS: While there is strong support and belief in the benefit of standardized nomenclature, the widespread adoption of TG-263 has been hindered by the effort needed by staff for implementation.  Feedback from the survey is being utilized to drive the focus of the update efforts and create tools to facilitate easier adoption of TG-263.


Subject(s)
Radiation Oncology , Terminology as Topic , Humans , Radiation Oncology/standards , Surveys and Questionnaires , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Neoplasms/radiotherapy , Organs at Risk/radiation effects , Practice Guidelines as Topic , Perception
2.
Int J Radiat Oncol Biol Phys ; 118(4): 963-970, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37793573

ABSTRACT

PURPOSE: Adjuvant durvalumab after definitive chemoradiotherapy (CRT) for unresectable stage III non-small cell lung cancer (NSCLC) is well-tolerated in clinical trials. However, pneumonitis rates outside of clinical trials remain poorly defined with CRT followed by durvalumab. We aimed to describe the influence of durvalumab on pneumonitis rates among a large cohort of patients with stage III NSCLC. METHODS AND MATERIALS: We studied patients with stage III NSCLC in the national Veterans Health Administration from 2015 to 2021 who received concurrent CRT alone or with adjuvant durvalumab. We defined pneumonitis as worsening respiratory symptoms with radiographic changes within 2 years of CRT and graded events according to National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. We used Cox regression to analyze risk factors for pneumonitis and the effect of postbaseline pneumonitis on overall survival. RESULTS: Among 1994 patients (989 CRT alone, 1005 CRT followed by adjuvant durvalumab), the 2-year incidence of grade 2 or higher pneumonitis was 13.9% for CRT alone versus 22.1% for CRT plus durvalumab (unadjusted P < .001). On multivariable analysis, durvalumab was associated with higher risk of grade 2 pneumonitis (hazard ratio, 1.45; 95% CI, 1.09-1.93; P = .012) but not grade 3 to 5 pneumonitis (P = .2). Grade 3 pneumonitis conferred worse overall survival (hazard ratio, 2.51; 95% CI, 2.06-3.05; P < .001) but grade 2 pneumonitis did not (P = .4). CONCLUSIONS: Adjuvant durvalumab use was associated with increased risk of low-grade but not higher-grade pneumonitis. Reassuringly, low-grade pneumonitis did not increase mortality risk. We observed increased rates of high-grade pneumonitis relative to clinical trials; the reasons for this require further study.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Adjuvants, Immunologic , Pneumonia/chemically induced , Pneumonia/epidemiology , Chemoradiotherapy/adverse effects
3.
Pract Radiat Oncol ; 13(2): e200-e208, 2023.
Article in English | MEDLINE | ID: mdl-36526245

ABSTRACT

PURPOSE: Locally advanced lung cancer (LALC) treatment planning is often complex due to challenging tradeoffs related to large targets near organs at risk, making the judgment of plan quality difficult. The purpose of this work was to update and maintain a multi-institutional knowledge-based planning (KBP) model developed by a statewide consortium of academic and community practices for use as a plan quality assurance (QA) tool. METHODS AND MATERIALS: Sixty LALC volumetric-modulated arc therapy plans from 2021 were collected from 24 institutions. Plan quality was scored, with high-quality clinical (HQC) plans selected to update a KBP model originally developed in 2017. The model was validated via automated KBP planning, with 20 cases excluded from the model. Differences in dose-volume histogram metrics in the clinical plans, 2017 KBP model plans, and 2022 KBP model plans were compared. Twenty recent clinical cases not meeting consortium quality metrics were replanned with the 2022 model to investigate potential plan quality improvements. RESULTS: Forty-seven plans were included in the final KBP model. Compared with the clinical plans, the 2022 model validation plans improved 60%, 65%, and 65% of the lung V20Gy, mean heart dose, and spinal canal D0.03cc metrics, respectively. The 2022 model showed improvements from the 2017 model in hot spot management at the cost of greater lung doses. Of the 20 recent cases not meeting quality metrics, 40% of the KBP model-replanned cases resulted in acceptable plans, suggesting potential clinical plan improvements. CONCLUSIONS: A multi-institutional KBP model was updated using plans from a statewide consortium. Multidisciplinary plan review resulted in HQC model training plans and model validation resulted in acceptable quality plans. The model proved to be effective at identifying potential plan quality improvements. Work is ongoing to develop web-based training plan review tools and vendor-agnostic platforms to provide the model as a QA tool statewide.


Subject(s)
Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Lung Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Lung
4.
Int J Radiat Oncol Biol Phys ; 115(1): 233-243, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36243227

ABSTRACT

PURPOSE: The complex technological processes involved in radiation therapy can be intimidating to patients, causing increased treatment-related anxiety and reduced satisfaction. An intervention was implemented to provide direct consultations between patients and medical physicists to reduce patient anxiety and improve patient satisfaction. A randomized clinical trial was conducted to test the intervention's effect on anxiety, distress, treatment adherence, technical understanding, and satisfaction in patients receiving radiation therapy. METHODS AND MATERIALS: Eligible patients were recruited into "intervention" and "standard of care" arms within a phase 2 screening randomized trial. Intervention-arm patients met with a medical physicist who provided technical information and addressed patient questions or concerns at the time of treatment simulation and before the first treatment. In addition to baseline information collected before randomization, participants were surveyed (1) before simulation, (2) before the first treatment, and (3) before the completion of treatment to evaluate the study endpoints. Primary endpoints included patient anxiety and distress. Secondary endpoints included patient treatment adherence, overall satisfaction, and technical understanding of treatment. Patients in the intervention arm were surveyed before and after each physicist meeting. RESULTS: Participant anxiety was significantly reduced in the intervention arm (difference, -0.29; 95% confidence interval, -0.57 to -0.02; P = .038). No differences in distress or treatment adherence were observed between groups. Although measures of technical understanding and satisfaction were evaluated as exploratory objectives, participants in the intervention group were more likely to feel that technical aspects of treatment were adequately explained (difference, 0.78; 95% confidence interval, 0.03-1.54), and all measures of technical understanding and satisfaction were considerably higher in the intervention group at the time of the first visit. CONCLUSIONS: The establishment of a direct patient-provider relationship with the medical physicist reduced anxiety in patients receiving radiation therapy. In addition, increases in patient understanding of the technical aspects of care and in satisfaction were observed at the initiation of treatment.


Subject(s)
Anxiety , Professional-Patient Relations , Humans , Anxiety/etiology , Anxiety/prevention & control , Patient Satisfaction , Surveys and Questionnaires , Personal Satisfaction
5.
Pract Radiat Oncol ; 12(4): e317-e328, 2022.
Article in English | MEDLINE | ID: mdl-35219880

ABSTRACT

PURPOSE: To assess the accuracy of dose calculations in the near-surface region for different treatment planning systems (TPSs), treatment techniques, and energies to improve clinical decisions for patients receiving whole breast irradiation (WBI). METHODS AND MATERIALS: A portable custom breast phantom was designed for dose measurements in the near-surface regions. Treatment plans of varying complexities were created at 8 institutions using 4 different TPSs on an anonymized patient data set (50 Gy in 25 fractions) and peer reviewed by participants. The plans were recalculated on the phantom data set. The phantom was aligned with predetermined shifts and laser marks or cone beam computed tomography, and the irradiation was performed using a variety of linear accelerators at the participating institutions. Dose was measured with radiochromic film placed at 0.5 and 1.0 cm depth and 3 locations per depth within the phantom. The film was scanned and analyzed >24 hours postirradiation. RESULTS: The percentage difference between the mean of the measured and calculated dose across the participating centers was -0.2 % ± 2.9%, with 95% of measurements within 6% agreement. No significant differences were found between the mean of the calculated and measured dose for all TPSs, treatment techniques, and energies at all depths and laterality investigated. Furthermore, no significant differences were observed between the mean of measured dose and the prescription dose of 2 Gy per fraction. CONCLUSION: These results demonstrate that dose calculations for clinically relevant WBI plans are accurate to within 6% of measurements in the near-surface region for various complexities, TPSs, linear accelerators, and beam energies. This work lays the necessary foundation for future studies investigating the correlation between near-surface dose and acute skin toxicities.


Subject(s)
Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...