Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835038

ABSTRACT

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Integrin alpha6 , Tumor Suppressor Protein p53 , Animals , Integrin alpha6/metabolism , Integrin alpha6/genetics , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation , Stem Cells/metabolism , Gene Deletion , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
2.
Methods Mol Biol ; 2471: 123-139, 2022.
Article in English | MEDLINE | ID: mdl-35175594

ABSTRACT

The orthotopic transplantation assay has provided important insights into mammary development, stem cell function, and tumorigenesis. Technically, it consists in grafting mammary tissue fragments, organoids, mammospheres, or isolated cells into the fat pads of prepubertal mice from which the endogenous epithelium has been surgically removed, thereby allowing growth and differentiation of mammary epithelial cells in their physiological environment. Here, we describe how is conducted transplantation of epithelial fragments and cells isolated from mouse mammary glands, report the various approaches currently used to evaluate the regeneration and self-renewal properties of mammary stem cells, and highlight the strengths and limitations of this in vivo grafting assay.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Animals , Cell Differentiation , Epithelial Cells/transplantation , Epithelium/physiology , Mammary Glands, Animal/cytology , Mammary Glands, Animal/physiology , Mice , Stem Cells
3.
Cell Mol Life Sci ; 78(15): 5681-5705, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34156490

ABSTRACT

17ß-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear "genomic" or membrane "non-genomic" actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Signal Transduction/physiology , Animals , Carcinogenesis/metabolism , Female , Humans
4.
Development ; 147(19)2020 10 08.
Article in English | MEDLINE | ID: mdl-32895290

ABSTRACT

The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6aF/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.


Subject(s)
Mammary Glands, Human/metabolism , STAT5 Transcription Factor/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Blotting, Western , Cell Line , Female , Flow Cytometry , Humans , In Situ Nick-End Labeling , Mammary Glands, Human/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , STAT5 Transcription Factor/genetics , rab GTP-Binding Proteins/genetics
5.
J Cell Sci ; 133(12)2020 06 23.
Article in English | MEDLINE | ID: mdl-32467329

ABSTRACT

Recent developments in techniques for tissue clearing and size reduction have enabled optical imaging of whole organs and the study of rare tumorigenic events in vivo The adult mammary gland provides a unique model for investigating physiological or pathological processes such as morphogenesis or epithelial cell dissemination. Here, we establish a new pipeline to study rare cellular events occurring in the mammary gland, by combining orthotopic transplantation of mammary organoids with the uDISCO organ size reduction and clearing method. This strategy allows us to analyze the behavior of individually labeled cells in regenerated mammary gland. As a proof of concept, we analyzed the localization of rare epithelial cells overexpressing atypical protein kinase C iota (also known as PRKCI, referred to here as aPKCι) with an N-terminal eGFP fusion (GFP-aPKCι+) in the normal mammary gland. Using this analytical pipeline, we were able to visualize epithelial aPKCι+ cells escaping from the normal mammary epithelium and disseminating into the surrounding stroma. This technical resource should benefit mammary development and tumor progression studies.


Subject(s)
Mammary Glands, Human , Organoids , Animals , Epithelial Cells , Epithelium , Humans , Mammary Glands, Animal , Morphogenesis
6.
Development ; 147(4)2020 02 17.
Article in English | MEDLINE | ID: mdl-31988184

ABSTRACT

Integrin dimers α3/ß1, α6/ß1 and α6/ß4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated using the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice; however, myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins, and underline an essential role of cell interactions with laminin for lactogenic differentiation.


Subject(s)
Integrins/physiology , Lactation , Mammary Glands, Animal/physiology , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Cell Survival , Cytoskeleton/physiology , Disease Progression , Female , Gene Deletion , Hormones/physiology , Integrin alpha3/physiology , Integrin alpha6/physiology , Integrin beta1/physiology , Integrin beta4/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Mutant Strains , Mutation , Neoplastic Stem Cells/cytology , Oligonucleotide Array Sequence Analysis , Ovary/physiology , Phenotype , Pregnancy , Pregnancy, Animal , Prognosis , Protein Binding , Protein Multimerization
8.
Stem Cell Reports ; 12(4): 831-844, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30905738

ABSTRACT

Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche.

9.
Breast Cancer Res ; 21(1): 13, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683141

ABSTRACT

BACKGROUND: The adult mammary epithelium is composed of basal and luminal cells. The luminal lineage comprises two major cell populations, positive and negative for estrogen and progesterone receptors (ER and PR, respectively), both containing clonogenic progenitor cells. Deregulated ER/PR- luminal progenitor cells are suspected to be at the origin of basal-type triple-negative (TNBC) breast cancers, a subtype frequently associated with loss of P53 function and MET signaling hyperactivation. Using mouse models, we recently reported that p53 restricts luminal progenitor cell amplification whereas paracrine Met activation stimulates their growth and favors a luminal-to-basal switch. Here, we analyzed how these two critical pathways interact to control luminal progenitor function. METHODS: We have (i) established and analyzed the gene expression profile of luminal progenitors isolated by ICAM-1, a robust surface marker we previously identified; (ii) purified luminal progenitors from p53-deficient and p53-proficient mouse mammary epithelium to compare their functional and molecular characteristics; and (iii) analyzed their response to HGF, the major Met ligand, in three-dimensional cultures. RESULTS: We found that luminal progenitors, compared to non-clonogenic luminal cells, overexpress Trp53 and numerous p53 target genes. In vivo, loss of Trp53 induced the expansion of luminal progenitors, affecting expression of several important p53 target genes including those encoding negative regulators of cell cycle progression. Consistently, p53-deficient luminal progenitors displayed increased proliferative and self-renewal activities in culture. However, they did not exhibit perturbed expression of luminal-specific markers and major regulators, such as Hey1, Elf5, and Gata3. Moreover, although expressing Met at higher level than p53-proficient luminal progenitors, p53-deficient luminal progenitors failed to acquire basal-specific features when stimulated by HGF, showing that p53 promotes the plastic behavior of luminal progenitors downstream of Met activation. CONCLUSIONS: Our study reveals a crosstalk between Met- and p53-mediated signaling pathways in the regulation of luminal progenitor function. In particular, it shows that neither p53 loss alone nor p53 loss combined with Met signaling activation caused an early detectable cell fate alteration in luminal progenitors. Conceivably, additional events are required to confer basal-specific characteristics to luminal-derived TNBCs.


Subject(s)
Cell Plasticity/physiology , Mammary Glands, Animal/cytology , Proto-Oncogene Proteins c-met/metabolism , Stem Cells/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Cycle/physiology , Epithelial Cells/physiology , Female , Intercellular Adhesion Molecule-1/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics
10.
Development ; 145(4)2018 02 21.
Article in English | MEDLINE | ID: mdl-29361573

ABSTRACT

Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/ß-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of ß-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/ß-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/ß-catenin signaling, a key pathway in mammary development and tumorigenesis.


Subject(s)
Membrane Glycoproteins/metabolism , Stem Cells/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Animals, Genetically Modified , Blotting, Western , Carcinogenesis/metabolism , Cell Culture Techniques , Flow Cytometry , Fluorescent Antibody Technique , Mice , Reverse Transcriptase Polymerase Chain Reaction , Wnt Signaling Pathway/genetics
11.
EMBO J ; 36(2): 165-182, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27974362

ABSTRACT

SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.


Subject(s)
Carrier Proteins/metabolism , Cell Differentiation , Collagen/metabolism , Mammary Glands, Human/growth & development , Animals , Extracellular Matrix/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout
12.
Elife ; 42015 Jul 13.
Article in English | MEDLINE | ID: mdl-26165517

ABSTRACT

HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial-mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis.


Subject(s)
Epithelial-Mesenchymal Transition , Hepatocyte Growth Factor/metabolism , Paracrine Communication , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Stem Cells/physiology , Animals , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/physiology , Mice , Stem Cells/drug effects
13.
Methods Mol Biol ; 1293: 161-72, 2015.
Article in English | MEDLINE | ID: mdl-26040687

ABSTRACT

The transplantation of mammary epithelial cells into the cleared fat pad allows their growth and differentiation in their normal physiological environment. This technique involves the grafting of tissue fragments or isolated cells into the mammary fat pads of prepubertal mice from which the endogenous epithelium has been surgically removed. Such transplantation assays are particularly useful for the analysis of morphogenetic potential and stem cell activity in normal mammary epithelium and breast tumors. We describe here the main steps in the transplantation of epithelial fragments and isolated cells from mouse mammary glands and the various approaches currently used to evaluate the regeneration and self-renewal properties of mammary stem cells.


Subject(s)
Adipose Tissue , Cell Transplantation , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Animals , Cell Separation/methods , Cell Transplantation/methods , Female , Mice
14.
Nat Cell Biol ; 16(10): 942-50, 1-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25173976

ABSTRACT

Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.


Subject(s)
Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Myocytes, Smooth Muscle/metabolism , Stem Cells/cytology , Actins/metabolism , Animals , Benzamides/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Dioxoles/pharmacology , Epithelial Cells/metabolism , Female , Flow Cytometry , Gene Expression Profiling , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mammary Glands, Animal/metabolism , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Microscopy, Fluorescence , Myocytes, Smooth Muscle/cytology , Oligonucleotide Array Sequence Analysis , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/metabolism
15.
Mol Cancer ; 12(1): 132, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24171719

ABSTRACT

BACKGROUND: Basal-like breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Recent studies have linked activation of the Wnt/ß-catenin pathway, and its downstream target, Myc, to basal-like breast cancer. Transgenic mice K5ΔNßcat previously generated by our team present a constitutive activation of Wnt/ß-catenin signaling in the basal myoepithelial cell layer, resulting in focal mammary hyperplasias that progress to invasive carcinomas. Mammary lesions developed by K5ΔNßcat mice consist essentially of basal epithelial cells that, in contrast to mammary myoepithelium, do not express smooth muscle markers. METHODS: Microarray analysis was used to compare K5ΔNßcat mouse tumors to human breast tumors, mammary cancer cell lines and the tumors developed in other mouse models. Cre-Lox approach was employed to delete Myc from the mammary basal cell layer of K5ΔNßcat mice. Stem cell amplification in K5ΔNßcat mouse mammary epithelium was assessed with 3D-culture and transplantation assays. RESULTS: Histological and microarray analyses of the mammary lesions of K5ΔNßcat females revealed their high similarity to a subset of basal-like human breast tumors with squamous differentiation. As in human basal-like carcinomas, the Myc pathway appeared to be activated in the mammary lesions of K5ΔNßcat mice. We found that a basal cell population with stem/progenitor characteristics was amplified in K5ΔNßcat mouse preneoplastic glands. Finally, the deletion of Myc from the mammary basal layer of K5ΔNßcat mice not only abolished the regenerative capacity of basal epithelial cells, but, in addition, completely prevented the tumorigenesis. CONCLUSIONS: These results strongly indicate that ß-catenin-induced stem cell amplification and tumorigenesis rely ultimately on the Myc pathway activation and reinforce the hypothesis that basal stem/progenitor cells may be at the origin of a subset of basal-like breast tumors.


Subject(s)
Mammary Neoplasms, Experimental/metabolism , Neoplastic Stem Cells/physiology , Proto-Oncogene Proteins c-myc/metabolism , beta Catenin/metabolism , Animals , Carcinogenesis/metabolism , Epithelial Cells/metabolism , Female , Humans , Mammary Neoplasms, Experimental/pathology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Proto-Oncogene Proteins c-myc/genetics , Sequence Deletion , Tumor Cells, Cultured , Wnt Signaling Pathway , beta Catenin/genetics
16.
Stem Cells ; 31(9): 1857-67, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712598

ABSTRACT

Mammary epithelium comprises a layer of luminal cells and a basal myoepithelial cell layer. Both mammary epithelial compartments, basal and luminal, contain stem and progenitor cells, but only basal cells are capable of gland regeneration upon transplantation. Aberrant expansion of stem/progenitor cell populations is considered to contribute to breast tumorigenesis. Germline deletions of p53 in humans and mice confer a predisposition to tumors, and stem cell frequency is abnormally high in the mammary epithelium of p53-deficient mice. However, it is unknown whether stem/progenitor cell amplification occurs in both, basal and luminal cell populations in p53-deficient mammary tissue. We used a conditional gene deletion approach to study the role of p53 in stem/progenitor cells residing in the mammary luminal and basal layers. Using two- and three-dimensional cell culture assays, we showed that p53 loss led to the expansion of clonogenic stem/progenitor cells in both mammary epithelial cell layers. Moreover, following p53 deletion, luminal and basal stem/progenitor cells acquired a capacity for unlimited propagation in mammosphere culture. Furthermore, limiting dilution and serial transplantation assays revealed amplification and enhanced self-renewal in the basal regenerating cell population of p53-deficient mammary epithelium. Our data suggest that the increase in stem/progenitor cell activity may be, at least, partially mediated by the Notch pathway. Taken together, these results strongly indicate that p53 restricts the propagation and self-renewal of stem/progenitor cells in both layers of the mammary epithelium providing further insight into the impact of p53 loss in breast cancerogenesis.


Subject(s)
Cell Compartmentation , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Stem Cells/cytology , Stem Cells/metabolism , Tumor Suppressor Protein p53/deficiency , Animals , Cell Count , Cell Proliferation , Clone Cells , Epithelial Cells/metabolism , Female , Gene Deletion , Humans , Integrases/metabolism , Keratin-5/genetics , Mice , Promoter Regions, Genetic/genetics , Receptors, Notch/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Tumor Suppressor Protein p53/metabolism
17.
Stem Cells ; 30(6): 1246-54, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22438054

ABSTRACT

The mammary epithelium comprises two major cell lineages: basal and luminal. Basal cells (BCs) isolated from the mammary epithelium and transplanted into the mouse mammary fat pad cleared from the endogenous epithelium regenerate the mammary gland, strongly suggesting that the basal epithelial compartment harbors a long-lived cell population with multipotent stem cell potential. The luminal cell layer is devoid of the regenerative potential, but it contains cells with clonogenic capacity, the luminal progenitors. Mammary BCs and luminal progenitors express high levels of the transcription factor Myc. Here, we show that deletion of Myc from mammary basal epithelial cells led to impaired stem cell self-renewal as evaluated by limiting dilution and serial transplantation assays. Luminal progenitor population was significantly diminished in mutant epithelium suggesting control by the BC layer. Colony formation assay performed with isolated BCs showed that clonogenic capacity was abolished by Myc deletion. Moreover, transplanted BCs depleted of Myc failed to produce epithelial outgrowths. Stimulation with ovarian hormones estrogen (E) and progesterone (P) partially rescued the repopulation capacity of Myc-depleted BCs; however, the Myc-deficient mammary epithelium developed in response to E/P treatment lacked stem and progenitor cells. This study provides the first evidence that in the mammary gland, Myc has an essential nonredundant function in the maintenance of the self-renewing multipotent stem cell population responsible for the regenerative capacity of the mammary epithelium and is required downstream from ovarian hormones, for the control of mammary stem and progenitor cell functions.


Subject(s)
Mammary Glands, Animal/cytology , Proto-Oncogene Proteins c-myc/physiology , Stem Cells/physiology , Animals , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/physiology , Epithelial Cells/transplantation , Female , Mammary Glands, Animal/physiology , Mice , Mice, Transgenic , Stem Cells/cytology
18.
Semin Cell Dev Biol ; 23(5): 599-605, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22430758

ABSTRACT

Integrins are ubiquitously expressed major cell surface receptors for extracellular matrix. Integrin interaction with their extracellular ligands triggers activation of the intracellular signaling pathways that control cell shape, motility, proliferation, survival, cell-type-specific gene expression. In this review, we summarize recent studies analyzing contribution of integrins to the control of the mammary morphogenesis and differentiation, function and maintenance of mammary stem and progenitor cells and resume the data from mouse models revealing the contribution of the integrin-mediated signaling to mammary tumorigenesis.


Subject(s)
Integrins/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Human/metabolism , Animals , Cell Transformation, Neoplastic/metabolism , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mammary Glands, Human/cytology , Mammary Glands, Human/growth & development , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
19.
PLoS One ; 7(12): e53498, 2012.
Article in English | MEDLINE | ID: mdl-23300933

ABSTRACT

BACKGROUND: Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT) "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question. METHODOLOGY/PRINCIPAL FINDINGS: Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres. CONCLUSIONS/SIGNIFICANCE: We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and provide physiological relevance to broadening EMT pathways.


Subject(s)
Cell Differentiation , Epithelial Cells/metabolism , Mammary Glands, Animal/embryology , Transcription Factors/genetics , Animals , Cell Adhesion , Cell Movement , Cell Proliferation , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition , Female , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mice , Morphogenesis , Snail Family Transcription Factors , Transcription Factors/metabolism
20.
Int J Dev Biol ; 55(7-9): 763-71, 2011.
Article in English | MEDLINE | ID: mdl-21948739

ABSTRACT

Over the last few years, the discovery of basal-type mammary carcinomas and the association of the regenerative potential of the mammary epithelium with the basal myoepithelial cell population have attracted considerable attention to this second major mammary lineage. However, many questions concerning the role of basal myoepithelial cells in mammary morphogenesis, functional differentiation and disease remain unanswered. Here, we discuss the mechanisms that control the myoepithelial cell differentiation essential for their contractile function, summarize new data concerning the roles played by cell-extracellular matrix (ECM), intercellular and paracrine interactions in the regulation of various aspects of the mammary basal myoepithelial cell functional activity. Finally, we analyze the contribution of the basal myoepithelial cells to the regenerative potential of the mammary epithelium and tumorigenesis.


Subject(s)
Breast/cytology , Mammary Glands, Animal/cytology , Animals , Breast/growth & development , Breast/physiology , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Cell Communication , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/physiology , Extracellular Matrix/physiology , Female , Humans , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/physiology , Mice , Myoepithelioma/etiology , Myoepithelioma/pathology , Paracrine Communication , Signal Transduction , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...