Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Environ Epigenet ; 10(1): dvae007, 2024.
Article in English | MEDLINE | ID: mdl-38846065

ABSTRACT

Ozone exposure induces a myriad of adverse cardiopulmonary outcomes in humans. Although advanced age and chronic disease are factors that may exacerbate a person's negative response to ozone exposure, there are no molecular biomarkers of susceptibility. Here, we examine whether epigenetic age acceleration (EAA) is associated with responsiveness to short-term ozone exposure. Using data from a crossover-controlled exposure study (n = 17), we examined whether EAA, as measured in lung epithelial cells collected 24 h after clean air exposure, modifies the observed effect of ozone on autonomic function, cardiac electrophysiology, hemostasis, pulmonary function, and inflammation. EAA was assessed in lung epithelial cells extracted from bronchoalveolar lavage fluids, using the pan-tissue aging clock. We used two analytic approaches: (i) median regression to estimate the association between EAA and the estimated risk difference for subclinical responses to ozone and (ii) a block randomization approach to estimate EAA's effect modification of subclinical responses. For both approaches, we calculated Fisher-exact P-values, allowing us to bypass large sample size assumptions. In median regression analyses, accelerated epigenetic age modified associations between ozone and heart rate-corrected QT interval (QTc) ([Formula: see text]= 0.12, P-value = 0.007) and between ozone and C-reactive protein ([Formula: see text] = -0.18, P = 0.069). During block randomization, the directions of association remained consistent for QTc and C-reactive protein; however, the P-values weakened. Block randomization also revealed that responsiveness of plasminogen activator inhibitor-1 (PAI-1) to ozone exposure was modified by accelerated epigenetic aging (PAI-1 difference between accelerated aging-defined block groups = -0.54, P-value = 0.039). In conclusion, EAA is a potential biomarker for individuals with increased susceptibility to ozone exposure even among young, healthy adults.

2.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38550347

ABSTRACT

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

3.
G3 (Bethesda) ; 13(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-37293843

ABSTRACT

Chum salmon are ecologically important to Pacific Ocean ecosystems and commercially important to fisheries. To improve the genetic resources available for this species, we sequenced and assembled the genome of a male chum salmon using Oxford Nanopore read technology and the Flye genome assembly software (contig N50: ∼2 Mbp, complete BUSCOs: ∼98.1%). We also resequenced the genomes of 59 chum salmon from hatchery sources to better characterize the genome assembly and the diversity of nucleotide variants impacting phenotype variation. With genomic sequences from a doubled haploid individual, we were able to identify regions of the genome assembly that have been collapsed due to high sequence similarity between homeologous (duplicated) chromosomes. The homeologous chromosomes are relics of an ancient salmonid-specific genome duplication. These regions were enriched with genes whose functions are related to the immune system and responses to toxins. From analyzing nucleotide variant annotations of the resequenced genomes, we were also able to identify genes that have increased levels of variants thought to moderately impact gene function. Genes related to the immune system and the detection of chemical stimuli (olfaction) had increased levels of these variants based on a gene ontology enrichment analysis. The tandem organization of many of the enriched genes raises the question of why they have this organization.


Subject(s)
Gene Duplication , Genome , Oncorhynchus keta , Oncorhynchus keta/genetics , Animals , Genome-Wide Association Study , Male , Female , Nucleotides/genetics , Phenotype , Phylogeny , Chromosomes , Sex Determination Processes
4.
G3 (Bethesda) ; 13(4)2023 04 11.
Article in English | MEDLINE | ID: mdl-36759939

ABSTRACT

Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly. We also resequenced the genomes of 83 coho salmon across the North American range to identify nucleotide variants and understand the demographic histories of these salmon by modeling effective population size from genome-wide data. From demographic history modeling, we observed reductions in effective population sizes between 3,750 and 8,000 years ago for several northern sampling sites, which may correspond to bottleneck events during recolonization after glacial retreat.


Subject(s)
Oncorhynchus kisutch , Animals , Oncorhynchus kisutch/genetics , Population Density , Genome
5.
Environ Epidemiol ; 6(4): e217, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35975166

ABSTRACT

Per and polyfluoroalkyl substances (PFAS) are associated with health outcomes ranging from cancer to high cholesterol. However, there has been little examination of how PFAS exposure might impact the development of multiple chronic diseases, known as multimorbidity. Here, we associated the presence of one or more PFAS in water systems serving the zip code of residence with chronic disease and multimorbidity. Methods: We used data from the unregulated contaminant monitoring rule 3 to estimate exposure to PFAS for a random sample of 10,168 patients from the University of North Carolina Healthcare System. The presence of 16 chronic diseases was determined via. their electronic health records. We used a logistic regression model in a cross-sectional study design to associate the presence of one or more PFAS with multimorbidity. Models were adjusted for age, race, sex, smoking status, socioeconomic status, and 20 county-level confounders. Results: There were four PFAS found in water systems that served at least one zip code represented in our patient data: PFOA, PFHpA, PFOS, and PFHxS. Exposure to any PFAS was associated with a odds ratio of 1.25 for multimorbidity (95% confidence interval = 1.09, 1.45). Among the chronic diseases with at least 300 cases, we observed associations with dyslipidemia, hypertension, ischemic heart disease, and osteoporosis. Conclusion: Exposure to PFAS is associated with a range of chronic diseases as well as multimorbidity. Accounting for the joint impacts of PFAS on multiple chronic conditions may give an increasingly clear picture of the public health impacts of PFAS.

6.
J Exp Biol ; 225(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36000289

ABSTRACT

In fish otoliths, CaCO3 normally precipitates as aragonite, and more rarely as vaterite or calcite. A higher incidence of vaterite deposition in otoliths from aquaculture-reared fish has been reported and it is thought that high growth rates under farming conditions might promote its deposition. To test this hypothesis, otoliths from growth hormone (GH) transgenic coho salmon and non-transgenic fish of matching size were compared. Once morphometric parameters were normalized by animal length, we found that transgenic fish otoliths were smaller (-24%, -19%, -20% and -30% for length, width, perimeter and area, respectively; P<0.001) and rounder (-12%, +13.5%, +15% and -15.5% in circularity, form factor, roundness and ellipticity; P<0.001) than otoliths from non-transgenic fish of matching size. Interestingly, transgenic fish had smaller eyes (-30% eye diameter) and showed a strong correlation between eye and otolith size. We also found that the percentage of otoliths showing vaterite deposition was significantly smaller in transgenic fish (21-28%) than in non-transgenic fish (69%; P<0.001). Likewise, the area affected by vaterite deposition within individual otoliths was reduced in transgenic fish (21-26%) compared with non-transgenic fish (42.5%; P<0.001). Our results suggest that high growth rates per se are not sufficient to cause vaterite deposition in all cases, and that GH overexpression might have a protective role against vaterite deposition, a hypothesis that needs further investigation.


Subject(s)
Oncorhynchus kisutch , Animals , Animals, Genetically Modified , Calcium Carbonate , Fishes , Growth Hormone/genetics , Incidence , Oncorhynchus kisutch/genetics , Otolithic Membrane
7.
Atmos Environ (1994) ; 2762022 May 01.
Article in English | MEDLINE | ID: mdl-35814352

ABSTRACT

A number of studies have found differing associations of disease outcomes with PM2.5 components (or species) and sources (e.g., biomass burning, diesel vehicles and gasoline vehicles). Here, a unique method of fusing daily chemical transport model (Community Multiscale Air Quality Modeling) results with observations has been utilized to generate spatiotemporal fields of the concentrations of major gaseous pollutants (CO, NO2, NOx, O3, and SO2), total PM2.5 mass, and speciated PM2.5 (including crustal elements) over North Carolina for 2002-2010. The fused results are then used in chemical mass balance source apportionment model, CMBGC-Iteration, which uses both gas constraint and particulate matter concentrations to quantify source impacts. The method, as applied to North Carolina, quantifies the impacts of ten source categories and provides estimates of source contributions to PM2.5 concentrations. The ten source categories include both primary sources (diesel vehicles, gasoline vehicles, dust, biomass burning, coal-fired power plants and sea salt) and secondary components (ammonium sulfate, ammonium bisulfate, ammonium nitrate and secondary organic carbon). The results show a steady decrease in anthropogenic source impacts, especially from diesel vehicles and coal-fired power plants. Secondary pollutant components accounted for approximately 70% of PM2.5 mass. This study demonstrates an ability to provide spatiotemporal fields of both PM components and source impacts using a chemical transport model fused with observation data, linked to a receptor-based source apportionment method, to develop spatiotemporal fields of multiple pollutants.

8.
Environ Res ; 214(Pt 1): 113768, 2022 11.
Article in English | MEDLINE | ID: mdl-35780850

ABSTRACT

Exposure to air pollution is a major risk factor for cardiovascular disease, disease risk factors, and mortality. Specifically, particulate matter (PM), and to some extent ozone, are contributors to these effects. In addition, exposures to these pollutants may be especially dangerous for susceptible populations. In this repeated-visit panel study, cardiovascular markers were collected from thirteen male participants with stable coronary artery disease. For 0-4 days prior to the health measurement collections, daily concentrations of fine PM (PM2.5) and ozone were obtained from local central monitoring stations located near the participant's homes. Then, single (PM2.5) and two-pollutant (PM2.5 and ozone) models were used to assess whether there were short-term changes in cardiovascular health markers. Per interquartile range increase in PM2.5, there were decrements in several heart rate variability metrics, including the standard deviation of the normal-to-normal intervals (lag 3, -5.8%, 95% confidence interval (CI) = -11.5, 0.3) and root-mean squared of successive differences (five day moving average, -8.1%, 95% CI = -15.0, -0.7). In addition, increases in PM2.5 were also associated with changes in P complexity (lag 1, 4.4%, 95% CI = 0.5, 8.5), QRS complexity (lag 1, 4.9%, 95% CI = 1.4, 8.5), total cholesterol (five day moving average, -2.1%, 95% CI = -4.1, -0.1), and high-density lipoprotein cholesterol (lag 2, -1.6%, 95% CI = -3.1, -0.1). Comparisons to our previously published work on ozone were conducted. We found that ozone affected inflammation and endothelial function, whereas PM2.5 influenced heart rate variability, repolarization, and lipids. All the health changes from these two studies were found at concentrations below the United States Environmental Protection Agency's National Ambient Air Quality Standards. Our results imply clear differences in the cardiovascular outcomes observed with exposure to the two ubiquitous air pollutants PM2.5 and ozone; this observation suggests different mechanisms of toxicity for these exposures.


Subject(s)
Air Pollutants , Air Pollution , Coronary Artery Disease , Ozone , Biomarkers , Cholesterol , Environmental Exposure , Heart Rate , Humans , Lipids , Male , Particulate Matter , United States
9.
Environ Int ; 167: 107407, 2022 09.
Article in English | MEDLINE | ID: mdl-35850080

ABSTRACT

BACKGROUND: Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS: Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS: Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION: FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/pharmacology , Female , Fish Oils/pharmacology , Humans , Lung , Male , Ozone/adverse effects , Respiratory Function Tests
10.
Open Heart ; 9(1)2022 06.
Article in English | MEDLINE | ID: mdl-35750420

ABSTRACT

OBJECTIVE: Short-term ambient fine particulate matter (PM2.5) is associated with adverse cardiovascular events including myocardial infarction (MI). However, few studies have examined associations between PM2.5 and subclinical cardiomyocyte damage outside of overt cardiovascular events. Here we evaluate the impact of daily PM2.5 on cardiac troponin I, a cardiomyocyte specific biomarker of cellular damage. METHODS: We conducted a retrospective cohort study of 2924 patients identified using electronic health records from the University of North Carolina Healthcare System who had a recorded MI between 2004 and 2016. Troponin I measurements were available from 2014 to 2016, and were required to be at least 1 week away from a clinically diagnosed MI. Daily ambient PM2.5 concentrations were estimated at 1 km resolution and assigned to patient residence. Associations between log-transformed troponin I and daily PM2.5 were evaluated using distributed lag linear mixed effects models adjusted for patient demographics, socioeconomic status and meteorology. RESULTS: A 10 µg/m3 elevation in PM2.5 3 days before troponin I measurement was associated with 0.06 ng/mL higher troponin I (95% CI=0.004 to 0.12). In stratified models, this association was strongest in patients that were men, white and living in less urban areas. Similar associations were observed when using 2-day rolling averages and were consistently strongest when using the average exposure over the 5 days prior to troponin I measurement. CONCLUSIONS: Daily elevations in PM2.5 were associated with damage to cardiomyocytes, outside of the occurrence of an MI. Poor air quality may cause persistent damage to the cardiovascular system leading to increased risk of cardiovascular disease and adverse cardiovascular events.


Subject(s)
Air Pollutants , Myocardial Infarction , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Male , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocytes, Cardiac , North Carolina/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Retrospective Studies , Survivors , Troponin I
11.
Part Fibre Toxicol ; 19(1): 12, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35139860

ABSTRACT

BACKGROUND: Exposure to air pollution is associated with elevated cardiovascular risk. Evidence shows that omega-3 polyunsaturated fatty acids (omega-3 PUFA) may attenuate the adverse cardiovascular effects of exposure to fine particulate matter (PM2.5). However, it is unclear whether habitual dietary intake of omega-3 PUFA protects against the cardiovascular effects of short-term exposure to low-level ambient air pollution in healthy participants. In the present study, sixty-two adults with low or high dietary omega-3 PUFA intake were enrolled. Blood lipids, markers of vascular inflammation, coagulation and fibrinolysis, and heart rate variability (HRV) and repolarization were repeatedly assessed in 5 sessions separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily PM2.5 and maximum 8-h ozone (O3) concentrations were obtained from nearby air quality monitoring stations. Linear mixed-effects models were used to assess the associations between air pollutant concentrations and cardiovascular responses stratified by the omega-3 intake levels. RESULTS: The average concentrations of ambient PM2.5 and O3 were well below the U.S. National Ambient Air Quality Standards during the study period. Significant associations between exposure to PM2.5 and changes in total cholesterol, von Willebrand factor (vWF), tissue plasminogen activator, D-dimer, and very-low frequency HRV were observed in the low omega-3 group, but not in the high group. Similarly, O3-associated adverse changes in cardiovascular biomarkers (total cholesterol, high-density lipoprotein, serum amyloid A, soluable intracellular adhesion molecule 1, and vWF) were mainly observed in the low omega-3 group. Lag-time-dependent biphasic changes were observed for some biomarkers. CONCLUSIONS: This study demonstrates associations between short-term exposure to PM2.5 and O3, at concentrations below regulatory standard, and subclinical cardiovascular responses, and that dietary omega-3 PUFA consumption may provide protection against such cardiovascular effects in healthy adults.


Subject(s)
Air Pollutants , Air Pollution , Fatty Acids, Omega-3 , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Biomarkers , Cholesterol , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Tissue Plasminogen Activator , von Willebrand Factor
12.
Int J Environ Health Res ; 32(3): 565-578, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32615777

ABSTRACT

Household air pollution is a leading risk factor for morbidity and premature mortality. Numerous cookstoves have been developed to reduce household air pollution, but it is unclear whether such cookstoves meaningfully improve health. In a controlled exposure study with a crossover design, we assessed the effect of pollution emitted from multiple cookstoves on acute differences in blood lipids and inflammatory biomarkers. Participants (n = 48) were assigned to treatment sequences of exposure to air pollution emitted from five cookstoves and a filtered-air control. Blood lipids and inflammatory biomarkers were measured before and 0, 3, and 24 hours after treatments. Many of the measured outcomes had inconsistent results. However, compared to control, intercellular adhesion molecule-1 was higher 3 hours after all treatments, and C-reactive protein and serum amyloid-A were higher 24 hours after the highest treatment. Our results suggest that short-term exposure to cookstove air pollution can increase inflammatory biomarkers within 24 hours.


Subject(s)
Air Pollution, Indoor , Air Pollution , Air Pollution, Indoor/analysis , Biomarkers , Cooking , Humans , Lipids
13.
Am Heart J ; 243: 201-209, 2022 01.
Article in English | MEDLINE | ID: mdl-34610283

ABSTRACT

BACKGROUND: Neighborhood-level socioeconomic status (SES) is associated with health outcomes, including cardiovascular disease and diabetes, but these associations are rarely studied across large, diverse populations. METHODS: We used Ward's Hierarchical clustering to define eight neighborhood clusters across North Carolina using 11 census-based indicators of SES, race, housing, and urbanicity and assigned 6992 cardiac catheterization patients at Duke University Hospital from 2001 to 2010 to clusters. We examined associations between clusters and coronary artery disease index > 23 (CAD), history of myocardial infarction, hypertension, and diabetes using logistic regression adjusted for age, race, sex, body mass index, region of North Carolina, distance to Duke University Hospital, and smoking status. RESULTS: Four clusters were urban, three rural, and one suburban higher-middle-SES (referent). We observed greater odds of myocardial infarction in all six clusters with lower or middle-SES. Odds of CAD were elevated in the rural cluster that was low-SES and plurality Black (OR 1.16, 95% CI 0.94-1.43) and in the rural cluster that was majority American Indian (OR 1.31, 95% CI 0.91-1.90). Odds of diabetes and hypertension were elevated in two urban and one rural low- and lower-middle SES clusters with large Black populations. CONCLUSIONS: We observed higher prevalence of cardiovascular disease and diabetes in neighborhoods that were predominantly rural, low-SES, and non-White, highlighting the importance of public health and healthcare system outreach into these communities to promote cardiometabolic health and prevent and manage hypertension, diabetes and coronary artery disease.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Hypertension , Myocardial Infarction , Cardiac Catheterization , Coronary Artery Disease/epidemiology , Diabetes Mellitus/epidemiology , Humans , Hypertension/epidemiology , Myocardial Infarction/epidemiology , Residence Characteristics , Social Class , Socioeconomic Factors
14.
Ann Am Thorac Soc ; 19(4): 583-593, 2022 04.
Article in English | MEDLINE | ID: mdl-34797737

ABSTRACT

Rationale: Exposure to air pollution is associated with adverse respiratory effects. Polyunsaturated omega 3 (n-3) fatty acids (FAs) appear to attenuate the health effects of air pollution. Objectives: This panel study evaluated whether n-3 FA intake and blood levels of polyunsaturated omega 6 (n-6) FAs can modulate the associations between respiratory effects and short-term exposure to ambient air pollution in healthy adults. Methods: Sixty-two healthy adults were enrolled into either high or low n-3 FA groups on the basis of n-3 FA intake and erythrocyte n-3 FA concentrations. Low and high n-6 FA groups were dichotomized on the basis of blood n-6 FA levels. Participants underwent three to five testing sessions separated by at least 7 days. At each session, the forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and plasma markers of inflammation (IL-6 [interleukin-6]) and oxidative stress (ox-LDL [oxidized low-density lipoprotein]) were measured. Associations between the ambient ozone and fine particulate matter (PM) (PM with an aerodynamic diameter ⩽2.5 µm [PM2.5]) levels and the lung function and blood markers were assessed by using mixed-effect models stratified by FA levels. Results: Average levels of ozone (40.8 ± 11.1 ppb) and PM2.5 (10.2 ± 4.1 µg/m3) were below national ambient air quality standards during the study period. FVC was positively associated with ozone at a lag of 0 days (lag0) in the high n-3 FA group, whereas the association was null in the low n-3 FA group (for an interquartile range increase in ozone of 1.8% [95% confidence interval (CI): 0.5% to 3.2%] vs. 0.0% [95% CI: -1.4% to 1.5%]); however, the association shifted to being negative at lag4 (-1.9% [95% CI: -3.2 to -0.5] vs. 0.2% [95% CI: -1.2% to 1.5%]) and lag5 (-1.2% [95% CI: -2.4% to 0.0%] vs. 0.9% [95% CI: -0.4% to 2.3%]). A similar pattern was observed in the low n-6 FA group compared with the high n-6 FA group (lag0: 1.7% [95% CI: 0.3% to 3.0%] vs. 0.5% [95% CI: -0.9% to 2.0%] and lag4: -1.4% [95% CI: -2.8% to 0.0%] vs. -0.5% [95% CI: -1.8% to 0.9%]). The associations between FEV1 and ozone and between FVC and PM2.5 also followed a similar pattern. Elevated ozone levels were associated with an immediate decrease in ox-LDL in the high n-3 FA group at lag0 (-12.3% [95% CI: -24.8% to 0.1%]), whereas there was no change in the low n-3 FA group (-7.5% [95% CI: -21.4% to 6.5%]) and there was a delayed increase in IL-6 in the high n-3 FA group compared with the low n-3 FA group (lag4: 66.9% [95% CI: 27.9% to 106.0%] vs. 8.9% [95% CI: -31.8% to 49.6%], lag5: 58.2% [95% CI: 22.4% to 94.1%] vs. -7.4% [95% CI: -48.8% to 34.0%], and lag6: 45.8% [95% CI: 8.7% to 82.9%] vs. -8.5% [95% CI: -49.7% to 32.6%]). Conclusions: We observed lag-dependent associations between short-term ambient air pollutants and lung function that were differentially modulated by n-3 and n-6 FAs, suggesting that n-3 and n-6 FAs counteract the respiratory response to low levels of ambient air pollution in healthy adults.Clinical trial registered with clinicaltrials.gov (NCT02921048).


Subject(s)
Air Pollutants , Air Pollution , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Fatty Acids, Omega-6 , Humans , Lung , Particulate Matter/adverse effects , Particulate Matter/analysis
15.
Environ Health ; 20(1): 123, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34872587

ABSTRACT

BACKGROUND: Short-term exposure to ambient nitrogen dioxide (NO2) is associated with adverse respiratory and cardiovascular outcomes. Supplementation of omega-3 polyunsaturated fatty acids (PUFA) has shown protection against exposure to fine particulate matter. This study aims to investigate whether habitual omega-3 PUFA intake differentially modify the associations between respiratory and cardiovascular responses and short-term exposure to ambient NO2. METHODS: Sixty-two healthy participants were enrolled into low or high omega-3 groups based on their habitual omega-3 PUFA intake. Each participant was repeatedly assessed for lung function, blood lipids, markers of coagulation and fibrinolysis, vascular function, and heart rate variability (HRV) in up to five sessions, each separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily ambient NO2 concentrations were obtained from an area air quality monitoring station on the day of outcome assessment (Lag0), 4 days prior (Lag1-4), as well as 5-day moving average (5dMA). The associations between short-term exposure to NO2 and the measured indices were evaluated using linear mixed-effects models stratified by omega-3 levels and adjusted by covariates including relative humidity and temperature. RESULTS: The average concentration of ambient NO2 during the study periods was 5.3±3.8 ppb which was below the National Ambient Air Quality Standards (NAAQS). In the high omega-3 group, an interquartile range (IQR) increase in short-term NO2 concentrations was significantly associated with increased lung function [e.g. 1.2% (95%CI: 0.2%, 2.2%) in FVC at lag1, 2.6% (95%CI: 0.4%, 4.8%) in FEV1 at 5dMA], decreased blood lipids [e.g. -2.6% (95%CI: -4.4%, -0.9%) in total cholesterol at lag2, -3.1% (95%CI: -6.1%, 0.0%) in HDL at 5dMA, and -3.1% (95%CI: -5.5%, -0.7%) in LDL at lag2], improved vascular function [e.g. 8.9% (95%CI: 0.6%, 17.2%) increase in FMD and 43.1% (95%CI: -79.8%, -6.3%) decrease in endothelin-1 at 5dMA], and changed HRV parameters [e.g. -7.2% (95%CI: -13.6%, -0.8%) in HFn and 13.4% (95%CI: 0.2%, 28.3%) in LF/HF ratio at lag3]. In the low omega-3 group, an IQR increase in ambient NO2 was associated with elevations in coagulation markers (von Willebrand Factor, D-dimer) and a decrease in HRV (very-low frequency); however, null associations were observed between short-term NO2 exposure and changes in lung function, blood lipids, and vascular function. CONCLUSIONS: The results in this study imply that dietary omega-3 PUFA consumption may offer respiratory and vascular benefits in response to short-term exposure of healthy adults to NO2 levels below the NAAQS. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT02921048 ).


Subject(s)
Air Pollutants , Air Pollution , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , Eating , Environmental Exposure/analysis , Fatty Acids, Unsaturated , Humans , Lung , Nitrogen Dioxide/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
17.
PLoS One ; 16(12): e0255752, 2021.
Article in English | MEDLINE | ID: mdl-34919547

ABSTRACT

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.


Subject(s)
Fish Proteins/genetics , Genetic Speciation , Genome , Life Cycle Stages/genetics , Reproduction/genetics , Salmon/genetics , Animals , Canada , Female , Fish Proteins/classification , Fish Proteins/metabolism , Gene Expression , Genetics, Population , Genomics/methods , Japan , Male , Pacific Ocean , Polymorphism, Genetic , Reproductive Isolation , Rivers , Salmon/classification , Salmon/growth & development , Salmon/metabolism , Whole Genome Sequencing
18.
Food Chem Toxicol ; 156: 112440, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34311008

ABSTRACT

Atlantic and Pacific salmon are frequently consumed species with very different economic values: farmed Atlantic salmon is cheaper than wild-caught Pacific salmons. Species replacements occur with the high valued Pacific species (Oncorhynchus keta, O. gorbuscha, O. kisutch, O. nerka and O. tshawytscha) substituted by cheaper farmed Atlantic salmon (Salmo salar) and Atlantic salmon by rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Here we use High-Resolution Melting Analysis (HRMA) to identify eight salmonid species. We designed primers to generate short amplicons of 72 and 116 bp from the fish barcode genes CO1 and CYTB. The time of analysis was under 70 min, after DNA extraction. Food processing of Atlantic salmon (fresh, "Bellevue", "gravadlax", frozen and smoked) did not impact the HRMA profiles allowing reliable identification. A blind test was conducted by three different institutes, showing correct species identifications irrespective of the laboratory conducting the analysis. Finally, a total of 82 retail samples from three European countries were analyzed and a low substitution rate of 1.2% was found. The developed tool provides a quick way to investigate salmon fraud and contributes to safeguard consumers.


Subject(s)
Fish Products/analysis , Salmonidae/classification , Animals , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Salmonidae/genetics , Species Specificity
19.
Environ Epidemiol ; 5(3): e157, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34131618

ABSTRACT

Long-term air pollution exposure, notably fine particulate matter, is a global contributor to morbidity and mortality and a known risk factor for coronary artery disease (CAD) and myocardial infarctions (MI). Knowledge of impacts related to source-apportioned PM2.5 is limited. New modeling methods allow researchers to estimate source-specific long-term impacts on the prevalence of CAD and MI. The Catheterization Genetics (CATHGEN) cohort consists of patients who underwent a cardiac catheterization at Duke University Medical Center between 2002 and 2010. Severity of coronary blockage was determined by coronary angiography and converted into a binary indicator of clinical CAD. History of MI was extracted from medical records. Annual averages of source specific PM2.5 were estimated using an improved gas-constrained source apportionment model for North Carolina from 2002 to 2010. We tested six sources of PM2.5 mass for associations with CAD and MI using mixed effects multivariable logistic regression with a random intercept for county and multiple adjustments. PM2.5 fractions of ammonium bisulfate and ammonium nitrate were associated with increased prevalence of CAD (odds ratio [OR] 1.20; 95% CI = 1.11, 1.22 and OR 1.18; 95% CI = 1.05, 1.32, respectively). PM2.5 from ammonium bisulfate and ammonium nitrate were also associated with increased prevalence of MI (OR 1.20; 95% CI = 1.10, 1.29 and OR 1.35; 95% CI = 1.20, 1.53, respectively). Greater PM2.5 concentrations of ammonium bisulfate and ammonium nitrate are associated with greater MI and CAD prevalence. The association with bisulfate suggests aerosol acidity may play a role. Our findings suggest analyses of source specific PM2.5 mass can reveal novel associations.

20.
Proc Biol Sci ; 288(1950): 20203020, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33947235

ABSTRACT

Global change is altering ecosystems at an unprecedented rate. The resulting shifts in species ranges and reproductive timing are opening the potential for hybridization between closely related species which could dramatically alter the genetic diversity, adaptive capacity and evolutionary trajectory of interbreeding taxa. Here, we used behavioural breeding experiments, in vitro fertilization experiments, and whole-transcriptome gene expression data to assess the potential for and consequences of hybridization between Chinook and Coho salmon. We show that behavioural and gametic prezygotic barriers between socio-economically valuable Chinook and Coho salmon are incomplete. Postzygotically, we demonstrate a clear transcriptomic response to hybridization among F1 Chinook-Coho offspring. Genes transgressively expressed within hybrids were significantly enriched with genes encoded in the nucleus but localized to the mitochondrion, suggesting a potential role for mito-nuclear incompatibilities as a postzygotic mechanism of hybrid breakdown. Chinook and Coho salmon are expected to continue to respond to climate change with shifts in migration timing and habitat use, potentiating hybridization between these species. The downstream consequences of hybridization on the future of these threatened salmon, and the ecosystems they inhabit, is unknown.


Subject(s)
Reproductive Isolation , Salmon , Animals , Ecosystem , Hybridization, Genetic , Salmon/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...