Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Neuron ; 112(11): 1727-1729, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843778

ABSTRACT

While effective analgesics, TRPV1 antagonists can dangerously alter thermoregulation. In this issue of Neuron, Huang et al.1 demonstrate that interaction with the S4-S5 linker of TRPV1 determines whether an antagonist affects core body temperature, with promising implications for analgesic development.


Subject(s)
Body Temperature Regulation , Hyperthermia , TRPV Cation Channels , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Hyperthermia/chemically induced , Animals , Body Temperature Regulation/drug effects , Body Temperature Regulation/physiology , Humans , Body Temperature/drug effects , Analgesics/pharmacology
2.
PLoS One ; 19(3): e0289395, 2024.
Article in English | MEDLINE | ID: mdl-38437228

ABSTRACT

The detection of temperature by the human sensory system is life-preserving and highly evolutionarily conserved. Platelets are sensitive to temperature changes and are activated by a decrease in temperature, akin to sensory neurons. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this multidisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.


Subject(s)
Calcium , TRPM Cation Channels , Humans , Cold Temperature , Calcium, Dietary , Endoplasmic Reticulum , Sensory Receptor Cells , TRPM Cation Channels/genetics , Membrane Proteins
3.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37502986

ABSTRACT

Platelets are sensitive to temperature changes and akin to sensory neurons, are activated by a decrease in temperature. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this interdisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.

5.
BMC Biol ; 21(1): 69, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013580

ABSTRACT

BACKGROUND: Pain is the primary reason people seek medical care, with chronic pain affecting ~ 20% of people in the USA. However, many existing analgesics are ineffective in treating chronic pain, while others (e.g., opioids) have undesirable side effects. Here, we describe the screening of a small molecule library using a thermal place aversion assay in larval zebrafish to identify compounds that alter aversion to noxious thermal stimuli and could thus serve as potential analgesics. RESULTS: From our behavioral screen, we discovered a small molecule, Analgesic Screen 1 (AS1), which surprisingly elicited attraction to noxious painful heat. When we further explored the effects of this compound using other behavioral place preference assays, we found that AS1 was similarly able to reverse the negative hedonic valence of other painful (chemical) and non-painful (dark) aversive stimuli without being inherently rewarding. Interestingly, targeting molecular pathways canonically associated with analgesia did not replicate the effects of AS1. A neuronal imaging assay revealed that clusters of dopaminergic neurons, as well as forebrain regions located in the teleost equivalent of the basal ganglia, were highly upregulated in the specific context of AS1 and aversive heat. Through a combination of behavioral assays and pharmacological manipulation of dopamine circuitry, we determined that AS1 acts via D1 dopamine receptor pathways to elicit this attraction to noxious stimuli. CONCLUSIONS: Together, our results suggest that AS1 relieves an aversion-imposed "brake" on dopamine release, and that this unique mechanism may provide valuable insight into the development of new valence-targeting analgesic drugs, as well as medications for other valence-related neurological conditions, such as anxiety and post-traumatic stress disorder (PTSD).


Subject(s)
Chronic Pain , Animals , Dopamine/metabolism , Zebrafish/metabolism , Analgesics/pharmacology , Dopaminergic Neurons/physiology
6.
Pain ; 162(2): 323-324, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32826762
7.
Nat Methods ; 17(4): 422-429, 2020 04.
Article in English | MEDLINE | ID: mdl-32203389

ABSTRACT

Brain circuits comprise vast numbers of interconnected neurons with diverse molecular, anatomical and physiological properties. To allow targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.


Subject(s)
Genomics/methods , Optogenetics , Recombinases/metabolism , Animals , Brain/cytology , Gene Expression Regulation , Genetic Engineering , Mice , Neurons/metabolism , Recombinases/genetics , Zebrafish
8.
eNeuro ; 6(4)2019.
Article in English | MEDLINE | ID: mdl-31308053

ABSTRACT

Although TWIK-related spinal cord K+ (TRESK) channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), whether TRESK activity regulates trigeminal pain processing is still not established. Dominant-negative TRESK mutations are associated with migraine but not with other types of pain in humans, suggesting that genetic TRESK dysfunction preferentially affects the generation of trigeminal pain, especially headache. Using TRESK global knock-out mice as a model system, we found that loss of TRESK in all TG neurons selectively increased the intrinsic excitability of small-diameter nociceptors, especially those that do not bind to isolectin B4 (IB4-). Similarly, loss of TRESK resulted in hyper-excitation of the small IB4- dural afferent neurons but not those that bind to IB4 (IB4+). Compared with wild-type littermates, both male and female TRESK knock-out mice exhibited more robust trigeminal nociceptive behaviors, including headache-related behaviors, whereas their body and visceral pain responses were normal. Interestingly, neither the total persistent outward current nor the intrinsic excitability was altered in adult TRESK knock-out DRG neurons, which may explain why genetic TRESK dysfunction is not associated with body and/or visceral pain in humans. We reveal for the first time that, among all primary afferent neurons, TG nociceptors are the most vulnerable to the genetic loss of TRESK. Our findings indicate that endogenous TRESK activity regulates trigeminal nociception, likely through controlling the intrinsic excitability of TG nociceptors. Importantly, we provide evidence that genetic loss of TRESK significantly increases the likelihood of developing headache.


Subject(s)
Headache/physiopathology , Neurons, Afferent/physiology , Nociception/physiology , Pain/physiopathology , Potassium Channels/physiology , Trigeminal Ganglion/physiopathology , Animals , Female , Ganglia, Spinal/physiopathology , Male , Membrane Potentials , Mice, Inbred C57BL , Mice, Knockout , Neurons, Afferent/metabolism , Nociceptors/physiology , Potassium Channels/genetics , Potassium Channels/metabolism , Trigeminal Ganglion/metabolism
9.
Elife ; 72018 03 21.
Article in English | MEDLINE | ID: mdl-29561265

ABSTRACT

Little is known about the capacity of lower vertebrates to experience itch. A screen of itch-inducing compounds (pruritogens) in zebrafish larvae yielded a single pruritogen, the TLR7 agonist imiquimod, that elicited a somatosensory neuron response. Imiquimod induced itch-like behaviors in zebrafish distinct from those induced by the noxious TRPA1 agonist, allyl isothiocyanate. In the zebrafish, imiquimod-evoked somatosensory neuronal responses and behaviors were entirely dependent upon TRPA1, while in the mouse TRPA1 was required for the direct activation of somatosensory neurons and partially responsible for behaviors elicited by this pruritogen. Imiquimod was found to be a direct but weak TRPA1 agonist that activated a subset of TRPA1 expressing neurons. Imiquimod-responsive TRPA1 expressing neurons were significantly more sensitive to noxious stimuli than other TRPA1 expressing neurons. Together, these results suggest a model for selective itch via activation of a specialized subpopulation of somatosensory neurons with a heightened sensitivity to noxious stimuli.


Subject(s)
Disease Models, Animal , Pruritus/physiopathology , TRPA1 Cation Channel/physiology , Zebrafish Proteins/physiology , Animals , Animals, Genetically Modified , Evoked Potentials, Somatosensory/drug effects , Evoked Potentials, Somatosensory/physiology , HEK293 Cells , Humans , Imiquimod/pharmacology , Isothiocyanates/pharmacology , Larva/drug effects , Larva/genetics , Larva/physiology , Membrane Potentials/drug effects , Mice , Neurons/drug effects , Neurons/physiology , Pruritus/genetics , TRPA1 Cation Channel/agonists , TRPA1 Cation Channel/genetics , Zebrafish , Zebrafish Proteins/genetics
10.
Headache ; 58(1): 88-101, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28925503

ABSTRACT

OBJECTIVE: To quantify the abundance of dural afferent neurons expressing transient receptor potential channel melastatin 8 (TRPM8), vesicular glutamate transporter 3 (VGLUT3), and neurofilament 200 (NF200) in adult mice. BACKGROUND: With the increasing use of mice as a model system to study headache mechanisms, it is important to understand the composition of dural afferent neurons in mice. In a previous study, we have measured the abundance of mouse dural afferent neurons that express neuropeptide calcitonin gene-related peptide as well as two TRP channels TRPV1 and TRPA1, respectively. Here, we conducted quantitative analysis of three other dural afferent subpopulations in adult mice. METHODS: We used the fluorescent tracer Fluoro-Gold to retrogradely label dural afferent neurons in adult mice expressing enhanced green fluorescent protein in discrete subpopulations of trigeminal ganglion (TG) neurons. Mechanoreceptors with myelinated fibers were identified by NF200 immunoreactivity. We also conducted Ca2+ -imaging experiments to test the overlap between TRPM8 and VGLUT3 expression in mouse primary afferent neurons (PANs). RESULTS: The abundance of TRPM8-expressing neurons in dural afferent neurons was significantly lower than that in total TG neurons. The percentages of dural afferent neurons expressing VGLUT3 and NF200 were comparable to those of total TG neurons, respectively. TRPM8 agonist menthol evoked Ca2+ influx in less than 7% VGLUT3-expressing PANs in adult mice. CONCLUSIONS: TG neurons expressing TRPM8, VGLUT3, and NF200 all innervate adult mouse dura. TRPM8 and VGLUT3 are expressed in distinct subpopulations of PANs in adult mice. These results provide an anatomical basis to investigate headache mechanisms in mouse models.


Subject(s)
Afferent Pathways/physiology , Amino Acid Transport Systems, Acidic/metabolism , Neurofilament Proteins/metabolism , Neurons/metabolism , TRPM Cation Channels/metabolism , Afferent Pathways/drug effects , Amino Acid Transport Systems, Acidic/genetics , Amino Acids/metabolism , Analysis of Variance , Animals , Calcium/metabolism , Female , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Menthol/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurofilament Proteins/genetics , Neurons/drug effects , RNA, Messenger/metabolism , Stilbamidines/metabolism , TRPM Cation Channels/genetics , Trigeminal Ganglion/cytology
11.
PLoS Genet ; 13(7): e1006884, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28708822

ABSTRACT

In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfß, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfß, indicating that in this context Cbfß serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfß in sensory neuron cell fate determination while also expanded are conserved.


Subject(s)
Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Neurogenesis/genetics , Receptors, Nerve Growth Factor/metabolism , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animals , Cell Differentiation , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Gene Expression Regulation, Developmental , Larva/genetics , Larva/metabolism , Neurons/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Nerve Growth Factor/genetics , Sensory Receptor Cells/metabolism , Sequence Alignment , Sequence Analysis, DNA , Signal Transduction , Zebrafish/embryology , Zebrafish Proteins/genetics
12.
Neuroscientist ; 22(2): 171-87, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25608689

ABSTRACT

The ability of the body to perceive noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors. The molecular receptors of noxious mechanical, temperature, or chemical stimuli are expressed in these neurons and have drawn considerable attention as possible targets for analgesic development to improve treatment for the millions who suffer from chronic pain conditions. A number of thermoTRPs, a subset of the transient receptor potential family of ion channels, are activated by a wide range on noxious stimuli. In this review, we review the function of these channels and examine the evidence that thermoTRPs play a vital role in acute, inflammatory and neuropathic nociception.


Subject(s)
Hyperalgesia/genetics , Hyperalgesia/physiopathology , Pain/genetics , Transient Receptor Potential Channels/physiology , Animals , Humans , Models, Molecular , Nociceptors/physiology , Physical Stimulation
13.
Mol Pain ; 11: 37, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26111800

ABSTRACT

BACKGROUND: Genome-wide association studies have identified TRPM8 (transient receptor potential melastatin 8) as one of the susceptibility genes for common migraine. Here, we investigated the postnatal changes of TRPM8-expressing dural afferent fibers as well as the function of dural TRPM8 channels in mice. RESULTS: First, we quantified the density and the number of axonal branches of TRPM8-expressing fibers in the dura of mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from one TRPM8 allele between postnatal day 2 (P2) to adulthood. The number of axonal branches on individual dural EGFP-positive fibers was decreased by 30% between P2 and P11. The density of dural EGFP-positive fibers was subsequently reduced by 50% between P16 and P21. Conversely, the density and the number of branches of axons expressing calcitonin gene-related peptide remained stable in postnatal mouse dura. The density of TRPM8-expressing fibers innervating the mouse cornea epithelium was significantly increased from P2 to adulthood. Next, we tested the function of dural TRPM8 channels in adult mice and found that TRPM8 agonist menthol effectively inhibited the nocifensive behavior evoked by dural application of inflammatory mediators. CONCLUSIONS: Our results indicate that the TRPM8-expressing dural afferent fibers undergo cell- and target tissue-specific axonal pruning during postnatal development. Activation of dural TRPM8 channels decreases meningeal irritation-evoked nocifensive behavior in adult mice. This provides a framework to further explore the role of postnatal changes of TRPM8-expressing dural afferents in the pathophysiology of pediatric and adult migraine.


Subject(s)
Dura Mater/metabolism , Neurons, Afferent/metabolism , TRPM Cation Channels/metabolism , Aging/metabolism , Animals , Animals, Newborn , Axons/drug effects , Axons/metabolism , Behavior, Animal , Calcitonin Gene-Related Peptide/metabolism , Dura Mater/drug effects , Epithelium, Corneal/metabolism , Green Fluorescent Proteins/metabolism , Ion Channel Gating/drug effects , Menthol/pharmacology , Mice , Neurons, Afferent/drug effects , TRPM Cation Channels/agonists
14.
Mol Pharmacol ; 88(1): 131-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25953616

ABSTRACT

The environmental irritant chloroform, a naturally occurring small volatile organohalogen, briefly became the world's most popular volatile general anesthetic (VGA) before being abandoned because of its low therapeutic index. When chloroform comes in contact with skin or is ingested, it causes a painful burning sensation. The molecular basis for the pain associated with chloroform remains unknown. In this study, we assessed the role of transient receptor potential (TRP) channel family members in mediating chloroform activation and the molecular determinants of VGA activation of TRPV1. We identified the subpopulation of dorsal root ganglion (DRG) neurons that are activated by chloroform. Additionally, we transiently expressed wild-type or specifically mutated TRP channels in human embryonic kidney cells and used calcium imaging or whole-cell patch-clamp electrophysiology to assess the effects of chloroform or the VGA isoflurane on TRP channel activation. The results revealed that chloroform activates DRG neurons via TRPV1 activation. Furthermore, chloroform activates TRPV1, and it also activates TRPM8 and functions as a potent inhibitor of the noxious chemical receptor TRPA1. The results also indicate that residues in the outer pore region of TRPV1 previously thought to be required for either proton or heat activation of the channel are also required for activation by chloroform and isoflurane. In addition to identifying the molecular basis of DRG neuron activation by chloroform and the opposing effects chloroform has on different TRP channel family members, the findings of this study provide novel insights into the structural basis for the activation of TRPV1 by VGAs.


Subject(s)
Anesthetics, Inhalation/pharmacology , Chloroform/pharmacology , Ganglia, Spinal/physiology , Isoflurane/pharmacology , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Animals , Calcium Channels/metabolism , Capsaicin/pharmacology , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Hot Temperature , Humans , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Protein Structure, Tertiary , TRPA1 Cation Channel , TRPM Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism
15.
PLoS One ; 10(1): e0116766, 2015.
Article in English | MEDLINE | ID: mdl-25587718

ABSTRACT

Acute and chronic pain conditions are often debilitating, inflicting severe physiological, emotional and economic costs and affect a large percentage of the global population. However, the development of therapeutic analgesic agents based primarily on targeted drug development has been largely ineffective. An alternative approach to analgesic development would be to develop low cost, high throughput, untargeted animal based behavioral screens that model complex nociceptive behaviors in which to screen for analgesic compounds. Here we describe the development of a behavioral based assay in zebrafish larvae that is effective in identifying small molecule compounds with analgesic properties. In a place aversion assay, which likely utilizes supraspinal neuronal circuitry, individually arrayed zebrafish larvae show temperature-dependent aversion to increasing and decreasing temperatures deviating from rearing temperature. Modeling thermal hyperalgesia, the addition of the noxious inflammatory compound and TRPA1 agonist allyl isothiocyanate sensitized heat aversion and reversed cool aversion leading larvae to avoid rearing temperature in favor of otherwise acutely aversive cooler temperatures. We show that small molecules with known analgesic properties are able to inhibit acute and/or sensitized temperature aversion.


Subject(s)
Analgesics/pharmacology , Nociception/drug effects , Zebrafish/physiology , Animals , Chronic Pain/drug therapy , Chronic Pain/physiopathology , Drug Discovery/methods , Hot Temperature , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Isothiocyanates/pharmacology , Larva/drug effects , Larva/metabolism , Larva/physiology , Small Molecule Libraries/pharmacology , Temperature , Transient Receptor Potential Channels/agonists , Zebrafish/metabolism
16.
Pain ; 155(10): 2124-33, 2014 10.
Article in English | MEDLINE | ID: mdl-25109670

ABSTRACT

The ability to sense and respond to thermal stimuli at varied environmental temperatures is essential for survival in seasonal areas. In this study, we show that mice respond similarly to ramping changes in temperature from a wide range of baseline temperatures. Further investigation suggests that this ability to adapt to different ambient environments is based on rapid adjustments made to a dynamic temperature set point. The adjustment of this set point requires transient receptor potential cation channel, subfamily member 8 (TRPM8), but not transient receptor potential cation channel, subfamily A, member 1 (TRPA1), and is regulated by phospholipase C (PLC) activity. Overall, our findings suggest that temperature response thresholds in mice are dynamic, and that this ability to adapt to environmental temperature seems to mirror the in vitro findings that PLC-mediated hydrolysis of phosphoinositol 4,5-bisphosphate modulates TRPM8 activity and thereby regulates the response thresholds to cold stimuli.


Subject(s)
Adaptation, Physiological/physiology , TRPM Cation Channels/metabolism , Thermosensing/physiology , Type C Phospholipases/metabolism , Animals , Mice , TRPM Cation Channels/genetics , Temperature
17.
J Neurosci ; 33(12): 5249-60, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23516290

ABSTRACT

The ability to detect hot temperatures is critical to maintaining body temperature and avoiding injury in diverse animals from insects to mammals. Zebrafish embryos, when given a choice, actively avoid hot temperatures and display an increase in locomotion similar to that seen when they are exposed to noxious compounds such as mustard oil. Phylogenetic analysis suggests that the single zebrafish ortholog of TRPV1/2 may have arisen from an evolutionary precursor of the mammalian TRPV1 and TRPV2. As opposed to TRPV2, mammalian TRPV1 is essential for environmentally relevant heat sensation. In the present study, we provide evidence that the zebrafish TRPV1 ion channel is also required for the sensation of heat. Contrary to development in mammals, zebrafish TRPV1(+) neurons arise during the first wave of somatosensory neuron development, suggesting a vital importance of thermal sensation in early larval survival. In vitro analysis showed that zebrafish TRPV1 acts as a molecular sensor of environmental heat (≥25°C) that is distinctly lower than the sensitivity of the mammalian form (≥42°C) but consistent with thresholds measured in behavioral assays. Using in vivo calcium imaging with the genetically encoded calcium sensor GCaMP3, we show that TRPV1-expressing trigeminal neurons are activated by heat at behaviorally relevant temperatures. Using knock-down studies, we also show that TRPV1 is required for normal heat-induced locomotion. Our results demonstrate for the first time an ancient role for TRPV1 in the direct sensation of environmental heat and show that heat sensation is adapted to reflect species-dependent requirements in response to environmental stimuli.


Subject(s)
Hot Temperature , Locomotion/physiology , Sensory Receptor Cells/physiology , TRPV Cation Channels/physiology , Zebrafish Proteins/physiology , Zebrafish/physiology , Acids/pharmacology , Amino Acid Sequence , Animals , Behavior, Animal/physiology , Capsaicin/pharmacology , Carcinogens/pharmacology , HEK293 Cells , Humans , Lateral Line System/cytology , Lateral Line System/physiology , Molecular Sequence Data , Sensory System Agents/pharmacology , TRPV Cation Channels/agonists , TRPV Cation Channels/genetics , Tetradecanoylphorbol Acetate/pharmacology , Trigeminal Nerve/cytology , Trigeminal Nerve/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics
18.
Mol Pain ; 8: 66, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22971321

ABSTRACT

BACKGROUND: Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the "headache circuit". Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. METHODS: We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. RESULTS AND CONCLUSIONS: We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.


Subject(s)
Dura Mater/metabolism , Neurons, Afferent/cytology , Neurons, Afferent/metabolism , TRPM Cation Channels/metabolism , TRPV Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism , Trigeminal Ganglion/cytology , Animals , Calcitonin Gene-Related Peptide/metabolism , Cell Size , Dura Mater/cytology , Face/innervation , Mice , Mice, Inbred C57BL , Plant Lectins/metabolism , Skin/innervation , TRPA1 Cation Channel
19.
PLoS One ; 6(3): e17504, 2011 Mar 02.
Article in English | MEDLINE | ID: mdl-21407809

ABSTRACT

We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats. TRPM8 in HEK293 cells generated output (y) when temperature (T) was below threshold of 28.4°C. Output (y) is given by two equations: At T >28.4°C, y = 0; At T <28.4°C, y  =  -k(T - 28.4°C). These equations show that TRPM8 is directional comparator to elicits output (y) depending on negative value of thermal difference (ΔT  =  T - 28.4°C). If negative ΔT-dependent output of TRPM8 in the skin induces responses to warm the skin for minimizing ΔT recursively, TRPM8 acts as thermostats against cooling. With TRPM8-deficient mice, we explored whether TRPM8 induces responses to warm the skin against cooling. In behavioral regulation, when room temperature was 10°C, TRPM8 induced behavior to move to heated floor (35°C) for warming the sole skin. In autonomic regulation, TRPM8 induced activities of thermogenic brown adipose tissue (BAT) against cooling. When menthol was applied to the whole trunk skin at neutral room temperature (27°C), TRPM8 induced a rise in core temperature, which warmed the trunk skin slightly. In contrast, when room was cooled from 27 to 10°C, TRPM8 induced a small rise in core temperature, but skin temperature was severely reduced in both TRPM8-deficient and wild-type mice by a large heat leak to the surroundings. This shows that TRPM8-driven endothermic system is less effective for maintenance of skin temperature against cooling. In conclusion, we found that TRPM8 is molecule of thermostat of skin temperature against cooling.


Subject(s)
Body Temperature Regulation/physiology , Cold Temperature , Skin Temperature/physiology , TRPM Cation Channels/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Animals , Autonomic Nervous System/physiology , Behavior, Animal/physiology , HEK293 Cells , Humans , Mice
20.
Nat Med ; 16(12): 1396-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21076394

ABSTRACT

Basal tearing is crucial to maintaining ocular surface wetness. Corneal cold thermoreceptors sense small oscillations in ambient temperature and change their discharge accordingly. Deletion of the cold-transducing ion channel Transient receptor potential cation channel subfamily M member 8 (TRPM8) in mice abrogates cold responsiveness and reduces basal tearing without affecting nociceptor-mediated irritative tearing. Warming of the cornea in humans also decreases tearing rate. These findings indicate that TRPM8-dependent impulse activity in corneal cold receptors contributes to regulating basal tear flow.


Subject(s)
Cornea/metabolism , Dry Eye Syndromes/etiology , Ocular Physiological Phenomena , TRPM Cation Channels/metabolism , Tears/physiology , Thermoreceptors/metabolism , 4-Aminopyridine/metabolism , Animals , Cold Temperature , Dry Eye Syndromes/metabolism , Menthol/pharmacology , Mice , Mice, Transgenic , Pyrazines/pharmacology , Pyridines/pharmacology , Shaker Superfamily of Potassium Channels/metabolism , TRPA1 Cation Channel , Transient Receptor Potential Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...