Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15334, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961080

ABSTRACT

Early detection of the adenocarcinoma cancer in colon tissue by means of explainable deep learning, by classifying histological images and providing visual explainability on model prediction. Considering that in recent years, deep learning techniques have emerged as powerful techniques in medical image analysis, offering unprecedented accuracy and efficiency, in this paper we propose a method to automatically detect the presence of cancerous cells in colon tissue images. Various deep learning architectures are considered, with the aim of considering the best one in terms of quantitative and qualitative results. As a matter of fact, we consider qualitative results by taking into account the so-called prediction explainability, by providing a way to highlight on the tissue images the areas that from the model point of view are related to the presence of colon cancer. The experimental analysis, performed on 10,000 colon issue images, showed the effectiveness of the proposed method by obtaining an accuracy equal to 0.99. The experimental analysis shows that the proposed method can be successfully exploited for colon cancer detection and localisation from tissue images.


Subject(s)
Colonic Neoplasms , Deep Learning , Humans , Colonic Neoplasms/diagnosis , Colonic Neoplasms/pathology , Image Processing, Computer-Assisted/methods , Early Detection of Cancer/methods , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology
2.
Int J Neural Syst ; 34(2): 2450007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273799

ABSTRACT

Background and Objective: Alzheimer's disease is nowadays the most common cause of dementia. It is a degenerative neurological pathology affecting the brain, progressively leading the patient to a state of total dependence, thus creating a very complex and difficult situation for the family that has to assist him/her. Early diagnosis is a primary objective and constitutes the hope of being able to intervene in the development phase of the disease. Methods: In this paper, a method to automatically detect the presence of Alzheimer's disease, by exploiting deep learning, is proposed. Five different convolutional neural networks are considered: ALEX_NET, VGG16, FAB_CONVNET, STANDARD_CNN and FCNN. The first two networks are state-of-the-art models, while the last three are designed by authors. We classify brain images into one of the following classes: non-demented, very mild demented and mild demented. Moreover, we highlight on the image the areas symptomatic of Alzheimer presence, thus providing a visual explanation behind the model diagnosis. Results: The experimental analysis, conducted on more than 6000 magnetic resonance images, demonstrated the effectiveness of the proposed neural networks in the comparison with the state-of-the-art models in Alzheimer's disease diagnosis and localization. The best results in terms of metrics are the best with STANDARD_CNN and FCNN with accuracy, precision and recall between 98% and 95%. Excellent results also from a qualitative point of view are obtained with the Grad-CAM for localization and visual explainability. Conclusions: The analysis of the heatmaps produced by the Grad-CAM algorithm shows that in almost all cases the heatmaps highlight regions such as ventricles and cerebral cortex. Future work will focus on the realization of a network capable of analyzing the three anatomical views simultaneously.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Algorithms , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...