Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
2.
Immunomedicine ; 4(1)2024 Jun.
Article in English | MEDLINE | ID: mdl-39246390

ABSTRACT

Antibodies to programmed cell death protein1 (anti-PD-1) have become a promising immunotherapy for triple negative breast cancer (TNBC), blocking PD-L1 signaling from pro-tumor cells through T cell PD-1 receptor binding. Nevertheless, only 10-20% of PD-L1+ metastatic TNBC patients who meet criteria benefit from ICB, and biomarkers to predict patient response have been elusive. We have previously developed an immunological niche, consisting of a microporous implant in the subcutaneous space, that supports tissue formation whose immune composition is consistent with that within vital organs. Herein, we investigated dynamic gene expression within this immunological niche to provide biomarkers of response to anti-PD-1. In a 4T1 model of metastatic TNBC, we observed sensitivity and resistance to anti-PD-1 based on primary tumor growth and survival. The niche was biopsied before, during, and after anti-PD-1 therapy, and analyzed for cell types and gene expression indicative of treatment refractivity. Myeloid cell-to-lymphocyte ratios were altered between ICB-sensitivity and resistance. Longitudinal analysis of gene expression implicated dynamic myeloid cell function that stratified sensitivity from resistance. A niche-derived gene signature predicted sensitivity or resistance prior to therapy. Analysis of the niche to monitor immunotherapy response presents a new opportunity to personalize care and investigate mechanisms underlying treatment resistance.

3.
medRxiv ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39148837

ABSTRACT

Rationale: Identification and validation of circulating biomarkers for lung function decline in COPD remains an unmet need. Objective: Identify prognostic and dynamic plasma protein biomarkers of COPD progression. Methods: We measured plasma proteins using SomaScan from two COPD-enriched cohorts, the Subpopulations and Intermediate Outcomes Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene), and one population-based cohort, Multi-Ethnic Study of Atherosclerosis (MESA) Lung. Using SPIROMICS as a discovery cohort, linear mixed models identified baseline proteins that predicted future change in FEV1 (prognostic model) and proteins whose expression changed with change in lung function (dynamic model). Findings were replicated in COPDGene and MESA-Lung. Using the COPD-enriched cohorts, Gene Set Enrichment Analysis (GSEA) identified proteins shared between COPDGene and SPIROMICS. Metascape identified significant associated pathways. Measurements and Main Results: The prognostic model found 7 significant proteins in common (p < 0.05) among all 3 cohorts. After applying false discovery rate (adjusted p < 0.2), leptin remained significant in all three cohorts and growth hormone receptor remained significant in the two COPD cohorts. Elevated baseline levels of leptin and growth hormone receptor were associated with slower rate of decline in FEV1. Twelve proteins were nominally but not FDR significant in the dynamic model and all were distinct from the prognostic model. Metascape identified several immune related pathways unique to prognostic and dynamic proteins. Conclusion: We identified leptin as the most reproducible COPD progression biomarker. The difference between prognostic and dynamic proteins suggests disease activity signatures may be different from prognosis signatures.

4.
Sci Rep ; 13(1): 8228, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217548

ABSTRACT

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Disease Progression , Smoking/adverse effects , Forced Expiratory Volume , Bronchoalveolar Lavage , Biomarkers
5.
Acta Biomater ; 132: 313-324, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33766798

ABSTRACT

Synthetic matrices offer a high degree of control and tunability for mimicking extracellular matrix functions of native tissue, allowing the study of disease and development in vitro. In this study, we functionalized degradable poly(ethylene glycol) hydrogels with extracellular matrix (ECM)-sequestering peptides aiming to recapitulate the native ECM composition for culture and maturation of ovarian follicular organoids. We hypothesized that ECM-sequestering peptides would facilitate deposition and retention of cell-secreted ECM molecules, thereby recreating cell-matrix interactions in otherwise bioinert PEG hydrogels. Specifically, heparin-binding peptide from antithrombin III (HBP), heparan sulfate binding peptide derived from laminin (AG73), basement membrane binder peptide (BMB), and heparan sulfate binding region of placental growth factor 2 (RRR) tethered to a PEG hydrogel significantly improved follicle survival, growth and maturation compared to PEG-Cys, a mechanically similar but biologically inert control. Immunohistochemical analysis of the hydrogel surrounding cultured follicles confirmed sequestration and retention of laminin, collagen I, perlecan, and fibronectin in ECM-sequestering hydrogels but not in bioinert PEG-Cys hydrogels. The media from follicles cultured in PEG-AG73, PEG-BMB, and PEG-RRR also had significantly higher concentrations of factors known to regulate follicle development compared to PEG-Cys. PEG-AG73 and PEG-BMB were the most beneficial for promoting follicle maturation, likely because AG73 and BMB mimic basement membrane interactions which are crucial for follicle development. Here we have shown that functionalizing PEG with ECM-sequestering peptides allows cell-secreted ECM to be retained within the hydrogels, restoring critical cell-matrix interactions and promoting healthy organoid development in a fully synthetic culture system. STATEMENT OF SIGNIFICANCE: Here we present a novel approach for sequestering and retaining cell-secreted extracellular matrix in a fully synthetic material for organoid culture. We have engineered a biomimetic poly(ethylene glycol) hydrogel functionalized with extracellular matrix-binding peptides to recapitulate the ovarian microenvironment. Incorporation of these peptides allows ovarian follicles to recreate their native matrix with the sequestered ECM that subsequently binds growth factors, facilitating follicle maturation. The novel design resulted in improved outcomes of folliculogenesis, potentially developing a fertility preservation option for young women undergoing sterilizing treatments for cancer. The fully synthetic and modular nature of this biomimetic material holds promise for other tissue engineering applications as it allows encapsulated cells to rebuild their native microenvironments in vitro.


Subject(s)
Extracellular Matrix Proteins , Fertility Preservation , Animals , Extracellular Matrix , Female , Humans , Hydrogels/pharmacology , Mice , Oocytes , Placenta Growth Factor , Polyethylene Glycols/pharmacology
6.
Sci Adv ; 6(37)2020 09.
Article in English | MEDLINE | ID: mdl-32917680

ABSTRACT

Fibrosis, characterized by aberrant tissue scarring from activated myofibroblasts, is often untreatable. Although the extracellular matrix becomes increasingly stiff and fibrous during disease progression, how these physical cues affect myofibroblast differentiation in 3D is poorly understood. Here, we describe a multicomponent hydrogel that recapitulates the 3D fibrous structure of interstitial tissue regions where idiopathic pulmonary fibrosis (IPF) initiates. In contrast to findings on 2D hydrogels, myofibroblast differentiation in 3D was inversely correlated with hydrogel stiffness but positively correlated with matrix fibers. Using a multistep bioinformatics analysis of IPF patient transcriptomes and in vitro pharmacologic screening, we identify matrix metalloproteinase activity to be essential for 3D but not 2D myofibroblast differentiation. Given our observation that compliant degradable 3D matrices amply support fibrogenesis, these studies demonstrate a departure from the established relationship between stiffness and myofibroblast differentiation in 2D, and provide a new 3D model for studying fibrosis and identifying antifibrotic therapeutics.

7.
Sci Rep ; 10(1): 12049, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694604

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and heterogeneous interstitial lung disease of unknown origin with a low survival rate. There are few treatment options available due to the fact that mechanisms underlying disease progression are not well understood, likely because they arise from dysregulation of complex signaling networks spanning multiple tissue compartments. To better characterize these networks, we used systems-focused data-driven modeling approaches to identify cross-tissue compartment (blood and bronchoalveolar lavage) and temporal proteomic signatures that differentiated IPF progressors and non-progressors. Partial least squares discriminant analysis identified a signature of 54 baseline (week 0) blood and lung proteins that differentiated IPF progression status by the end of 80 weeks of follow-up with 100% cross-validation accuracy. Overall we observed heterogeneous protein expression patterns in progressors compared to more homogenous signatures in non-progressors, and found that non-progressors were enriched for proteomic processes involving regulation of the immune/defense response. We also identified a temporal signature of blood proteins that was significantly different at early and late progressor time points (p < 0.0001), but not present in non-progressors. Overall, this approach can be used to generate new hypothesis for mechanisms associated with IPF progression and could readily be translated to other complex and heterogeneous diseases.


Subject(s)
Biomarkers/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Aged , Biomarkers/blood , Blood Proteins , Bronchoalveolar Lavage Fluid , Disease Progression , Disease Susceptibility , Female , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/pathology , Male , Middle Aged , Protein Interaction Mapping , Proteomics/methods
8.
J Biomed Mater Res A ; 105(9): 2416-2428, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28467030

ABSTRACT

Thermoresponsive polymer (TRP) cell culture substrates are widely utilized for nonenzymatic, temperature-triggered release of adherent cells. Increasingly, multicomponent TRPs are being developed to facilitate refined control of cell adhesion and detachment, which requires an understanding of the relationships between composition-dependent substrate physicochemical properties and cellular responses. Here, we utilize a homologous series of poly(MEO2 MAx -co-OEGMAy ) brushes with variable copolymer ratio (x/y) to explore the effects of substrate hydrophobicity on L-929 fibroblast adhesion, morphology, and temperature-triggered cell detachment. Substrate hydrophobicity is reported in terms of the equilibrium spreading coefficient (S), and variations in copolymer ratio reveal differential hydrophobicity that is correlated to serum protein adsorption and initial cell attachment at 37°C. Furthermore, quantitative metrics of cell morphology show that cell spreading is enhanced on more hydrophobic surfaces with increased (x/y) ratio, which is further supported by gene expression analysis of biomarkers of cell spreading (e.g., RhoA, Dusp2). Temperature-dependent cell detachment is limited for pure poly(MEO2 MA); however, rapid cell rounding and detachment (<20 min) are evident for all poly(MEO2 MAx -co-OEGMAy ) substrates. These results suggest that increased MEO2 MA content in poly(MEO2 MAx -co-OEGMAy ) substrates elicits enhanced protein adsorption, cell adhesion, and cell spreading; however, integration of small amounts of the more hydrophilic OEGMA unit facilitates both cell attachment/spreading and detachment. This study demonstrates an important role for the composition-dependent control of surface hydrophobicity in the design of multicomponent TRPs for desired biological outcomes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2416-2428, 2017.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Methacrylates/pharmacology , Polymers/pharmacology , Temperature , Adsorption , Animals , Blood Proteins/metabolism , Cell Adhesion/drug effects , Cell Line , Cell Shape/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Gene Expression Regulation/drug effects , Kinetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL