ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Species of Vismia (Hypericaceae), known in Brazil as "lacre", are commonly used in traditional Amazonian medicine for the treatment of skin lesions, including those caused by Leishmania infection. AIM OF THE STUDY: Hexane extracts from the leaves of Vismia cayennensis, V. gracilis, V. sandwithii and V. guianensis, as well as from the fruits of the latter, in addition to the anthraquinones vismiaquinone, physcion and chrysophanol isolated from these species were explored for their anti-promastigote and anti-amastigote activity on Leishmania amazonensis. MATERIALS AND METHODS: Extracts were prepared by static maceration with n-hexane. The compounds, isolated by chromatographic techniques, were identified by spectroscopic methods (1H and 13C NMR). Promastigotes of L.amazonensis were incubated with hexane extracts (1-50 µg/mL) or anthraquinones (1-50 µM) and the parasite survival analyzed. The action of compounds on reactive oxygen species (ROS) production, mitochondrial membrane potential, and membrane integrity of promastigotes were evaluated by flow cytometer, and the cytotoxicity on mammalian cells using MTT assay. Furthermore, the activity of compounds against amastigotes and nitric oxide production were also investigated. RESULTS: Vismiaquinone and physcion were obtained from the leaves of V. guianensis. Physcion, as well as chrysophanol, were isolated from V. sandwithii. Vismia cayennensis and V. gracilis also showed vismiaquinone, compound detected in lower quantity in the fruits of V. guianensis. All extracts were active against the parasite, corroborating the popular use. The greatest activity against promastigotes was achieved with V. guianensis extract (IC50 4.3 µg/mL), precisely the most used Vismia species for treating cutaneous leishmaniasis. Vismiaquinone and physcion exhibited relevant activity with IC50 12.6 and 2.6 µM, respectively. Moreover, all extracts and anthraquinones tested induced ROS production, mitochondrial dysfunction, membrane disruption and were able to kill intracellular amastigote forms, being worthy of further in vivo studies as potential antileishmanial drugs. CONCLUSIONS: The overall data achieved in the current investigation scientifically validate the traditional use of Vismia species, mainly V. guianensis, as an anti-Leishmania agent. Furthermore, the promising results presented here indicate species of Vismia as potentially useful resources of Brazilian flora for the discovery of therapeutic solutions for neglected diseases.
Subject(s)
Antiprotozoal Agents , Clusiaceae , Emodin/analogs & derivatives , Leishmaniasis, Cutaneous , Leishmaniasis , Plants, Medicinal , Animals , Mice , Hexanes , Reactive Oxygen Species , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis/drug therapy , Mice, Inbred BALB C , MammalsABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: The tribe Symphonieae (Clusiaceae) encompasses 48 species accommodated in seven genera (Lorostemon, Montrouziera, Moronobea, Pentadesma, Platonia, Symphonia and Thysanostemon). Parts of these plants, mainly the exudates and the seeds oil are useful for different purposes, especially for treating dermatological conditions. In addition to the role in the folk medicine, some species are of great economic and cultural importance for native people from different continents. AIM OF THE REVIEW: The goal of this review is to critically summarize the current knowledge on systematics, ethnobotanical, chemical and pharmacological aspects of species from the tribe Symphonieae, as well as to provide support for future taxonomic and phylogenetic studies on the Clusiaceae family. MATERIALS AND METHODS: The available information was gathered from many different databases (Web of Science, ScienceDirect, Scopus, Pubmed, ChemSpider, SciFinder, ACS Publications, Wiley Online Library, Useful Tropical Plants Database, Google Scholar). Additional data from books, theses and dissertations were also included in this review. RESULTS: Chemical studies of Symphonieae have demonstrated that the genera are a source of benzophenones, xanthones and biflavonoids. Components as sesquiterpenoids, triterpenoids, flavonoids, free fatty acids, among others, have also been reported. Extracts and compounds isolated from a variety of species have been exhibiting antimicrobial, cytotoxic and antiprotozoal activities, corroborating part of their medicinal uses. In addition, certain species produce edible fruits and a kind of "butter" with economic importance. All species produce exudate, which often has great relevance in the daily lives of local people. CONCLUSION: Several species of Symphonieae have potential therapeutic applications and some of them have been investigated to scientifically validate their popular uses. In addition, a number of species have proved to be a rich source of promising pharmacologically active compounds. Finally, the value of fruits, exudate and butter, for instance, should serve as a stimulus for the sustainable development of products that aim to take advantage of these natural resources.
Subject(s)
Clusiaceae/chemistry , Medicine, Traditional/methods , Plant Extracts/pharmacology , Animals , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistryABSTRACT
Abstract Natural products, especially phytochemicals, have been extensively studies and have exhibited important antiproliferative effects. The American native species Urera baccifera (L.) Gaudich. ex Wedd. (Urticaceae) is widely distributed in Brazil, where it is known as urtiga-vermelha or urtigão. The leaves are popularly used as anti-inflammatory, antirheumatic and in the treatment of gastric disorders. However, the antiproliferative potential of this plant against human tumor cells remain to be elucidated. In this study, we evaluated the antiproliferative effects of U. baccifera leaves extracts and fractions against a panel of human tumor cell lines in vitro besides a chemical evaluation of the most active sample by mass spectrometry (ESI-IT-MSn). The hydroalcoholic extract was inactive while dichloromethane extract showed moderate cytostatic activity against ovarian carcinoma cell line (OVCAR-3, GI50 = 1.5 μg/mL). More, the ethyl acetate and n-butanol fractions did not show important activity against tumour cell while the dichloromethane and hexane fractions showed moderate cytostatic activity against ovarian tumor cell line (OVCAR-3, GI50 = 12.7 and 9.4 μg/mL, respectively). Finally, the chemical profile evaluated by mass spectrometry (ESI-IT-MSn) allowed the detection of flavonoids in the HEU and hydroxylated fatty acid in DEU that can explain partially the biological effects observed. This is the first report of the antiproliferative effects of U. baccifera, and DEU has shown potential as a promising source of bioactive compounds.