Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Vet Anaesth Analg ; 51(5): 491-499, 2024.
Article in English | MEDLINE | ID: mdl-39142980

ABSTRACT

OBJECTIVE: To examine the effect of ketanserin and naloxone on fentanyl-induced motor activity in isoflurane-anaesthetized pigs. STUDY DESIGN: Randomized, blinded, prospective two-group study. ANIMALS: A group of 12 crossbred pigs weighing 22-31 kg. METHODS: Fentanyl was administered to isoflurane-anaesthetized pigs at 7.5 µg kg-1 hour-1 for 40 minutes intravenously, followed by an intravenous injection of naloxone 0.1 mg kg-1 or ketanserin 1 mg kg-1. Electromyography (EMG) and accelerometry were used to record motor unit activity and tremors, respectively. To test the effect of drug administration on motor activity, data from a 5 minute period at baseline, immediately before and after antagonist injection were compared in a mixed model; p < 0.05. RESULTS: Results are reported with the median difference, 95% confidence intervals and corresponding p-values in brackets. Fentanyl significantly increased EMG activity [30.51 (1.84-81.02) µV, p = 0.004] and induced tremors [0.09 (0.02-0.18) m s-2, p < 0.001] in 10 of 12 pigs. Ketanserin significantly reduced EMG [32.22 (6.29-136.80) µV, p = 0.001] and tremor [0.10 (0.03-0.15) m s-2, p = 0.007] activity. No significant effect was found for naloxone on EMG [26.76 (-13.28-91.17) µV, p = 0.4] or tremors [0.08 (-0.01-0.19) m s-2, p = 0.08]. CONCLUSIONS AND CLINICAL RELEVANCE: Fentanyl can induce motor activity in anaesthetized pigs, with a suggested link to the serotonergic system. This study shows that ketanserin can antagonize this activity, which supports the role of serotonin. This knowledge contributes to the general understanding of the motor effects of fentanyl and especially the problem of tremors in anaesthetized pigs.


Subject(s)
Anesthetics, Inhalation , Fentanyl , Isoflurane , Ketanserin , Naloxone , Animals , Fentanyl/pharmacology , Fentanyl/administration & dosage , Naloxone/pharmacology , Swine , Ketanserin/pharmacology , Isoflurane/pharmacology , Anesthetics, Inhalation/pharmacology , Female , Male , Motor Activity/drug effects , Anesthetics, Intravenous/pharmacology , Narcotic Antagonists/pharmacology
2.
Animals (Basel) ; 13(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37508164

ABSTRACT

Stunning by carbon dioxide (CO2) inhalation is controversial because it is associated with vigorous movements and behaviours which may or may not be conscious reactions. Furthermore, it is unknown whether some behaviours might indicate the transition into unconsciousness. Our study objective was to investigate the loss of consciousness during CO2 stunning by linking physiological variables (in particular pH, PaO2 and PaCO2) to the onset of observed behaviours. A total of 11 cross-bred pigs were studied. A tracheostomy tube, venous and arterial cannulae were placed under sevoflurane anaesthesia. After recovery from this, and a "wash out" period of at least 30 min, arterial blood samples were taken (and baseline values established) before 90-95% CO2 in medical air was administered through the tracheostomy tube. Subsequent behaviours were video-recorded and key physiological variables were evaluated using an anaesthetic monitor and the frequent sampling of arterial blood (albeit with inconsistent inter-sample intervals). After the study, behaviours were classified in an ethogram. At the onset of behaviours categorised as "vigorous movement extremities", "opisthotonos" and "agonal gasping" pH values (range) were: 6.74-7.34; 6.66-6.96 and 6.65-6.87, while PaCO2 (kPa) was 4.6-42.2, 24.4-51.4 and 29.1-47.6. Based upon these values, we conclude that the pigs were probably unconscious at the onset of "opisthotonos" and "agonal gasping", but some were probably conscious at the onset of "vigorous movements".

3.
Animals (Basel) ; 13(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37238100

ABSTRACT

Analgesic effects of fentanyl have been investigated using behavior. The behavioral effects of fentanyl and possible serotonergic influence are largely unknown. We therefore investigated behavioral effects of fentanyl, with or without the serotonin antagonist ketanserin, in pigs. Fourteen mixed-breed pigs, weighing 17-25 kg were included in a randomised blinded prospective, balanced three-group study. Ten pigs received first 5 and then 10 µg/kg of fentanyl intravenously. Ketanserin at 1 mg/kg or saline was given intravenously as a third injection. Four control pigs received three injections of saline. Behavior was video-recorded. The distance moved was automatically measured by commercially available software, and behaviors manually scored in retrospect. Fentanyl inhibited resting and playing, and induced different repetitive behaviors. The mean (SD) distance moved in the control group and fentanyl group was 21.3 (13.0) and 57.8 (20.8) metres respectively (p < 0.05 for pairwise comparison). A stiff gait pattern was seen after fentanyl injection for median (range) 4.2 (2.8-5.1) minutes per 10 min, which was reduced to 0 (0-4) s after ketanserin administration. Conclusion: fentanyl-induced motor and behavioral effects, and serotonergic transmission may be involved in some of them. The psychomotor side effects of fentanyl could potentially interfere with post-operative pain evaluation in pigs.

SELECTION OF CITATIONS
SEARCH DETAIL