Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(25): 9998-10006, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31136164

ABSTRACT

DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.


Subject(s)
Aniline Compounds/chemical synthesis , Combinatorial Chemistry Techniques/methods , DNA/chemistry , Piperidines/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Proof of Concept Study
2.
Inflamm Res ; 65(9): 737-43, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27261270

ABSTRACT

OBJECTIVE AND DESIGN: The goal of this study was to assess the capacity of VBP15, a dissociative steroidal compound, to reduce pro-inflammatory cytokine expression in vitro, to reduce symptoms of colitis in the trinitrobenzene sulfonic acid-induced murine model, and to assess the effect of VBP15 on growth stunting in juvenile mice. MATERIALS: In vitro studies were performed in primary human intestinal epithelial cells. Colitis was induced in mice by administering trinitrobenzene sulfonic acid. Growth stunting studies were performed in wild type outbred mice. TREATMENT: Cells were treated with VBP15 or prednisolone (10 µM) for 24 h. Mice were subjected to 3 days of VBP15 (30 mg/kg) or prednisolone (30 mg/kg) in the colitis study. In the growth stunting study, mice were subjected to VBP15 (10, 30, 45 mg/kg) or prednisolone (10 mg/kg) for 5 weeks. METHODS: Cytokines were measured by PCR and via Luminex. Colitis symptoms were evaluated by assessing weight loss, intestinal blood, and stool consistency. Growth stunting was assessed using an electronic caliper. RESULTS: VBP15 significantly reduced the in vitro production of CCL5 (p < 0.001) IL-6 (p < 0.001), IL-8 (p < 0.05) and reduced colitis symptoms (p < 0.05). VBP15 caused less growth stunting than prednisolone (p < 0.001) in juvenile mice. CONCLUSION: VBP15 may reduce symptoms of IBD, while decreasing or avoiding detrimental side effects.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Pregnadienediols/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Body Size/drug effects , Cells, Cultured , Colitis/chemically induced , Colitis/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Male , Mice, Inbred BALB C , NF-kappa B/metabolism , Pregnadienediols/pharmacology , Trinitrobenzenesulfonic Acid
3.
J Neurol Sci ; 356(1-2): 157-62, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26119397

ABSTRACT

The dysferlin-deficient A/J mouse strain represents a homologous model for limb-girdle muscular dystrophy 2B. We evaluated the disease phenotype in 10 month old A/J mice compared to two dysferlin-sufficient, C57BL/6 and A/JOlaHsd, mouse lines to determine which functional end-points are sufficiently sensitive to define the disease phenotype for use in preclinical studies in the A/J strain. A/J mice had significantly lower open field behavioral activity (horizontal activity, total distance, movement time and vertical activity) when compared to C57BL/6 and A/JoIaHsd mice. Both A/J and A/JOIaHsd mice showed decreases in latency to fall with rotarod compared to C57BL/6. No changes were detected in grip strength, force measurements or motor coordination between these three groups. Furthermore, we have found that A/J muscle shows significantly increased levels of the pro-inflammatory cytokine TNF-α when compared to C57BL/6 mice, indicating an activation of NF-κB signaling as part of the inflammatory response in dysferlin-deficient muscle. Therefore, we assessed the effect of celastrol (a potent NF-κB inhibitor) on the disease phenotype in female A/J mice. Celastrol treatment for four months significantly reduced the inflammation in A/J muscle; however, it had no beneficial effect in improving muscle function, as assessed by grip strength, open field activity, and in vitro force contraction. In fact, celastrol treated mice showed a decrease in body mass, hindlimb grip strength and maximal EDL force. These findings suggest that inhibition of inflammation alone may not be sufficient to improve the muscle disease phenotype in dysferlin-deficient mice and may require combination therapies that target membrane stability to achieve a functional improvement in skeletal muscle.


Subject(s)
Inflammation/drug therapy , Membrane Proteins/deficiency , Muscular Dystrophies, Limb-Girdle/drug therapy , Triterpenes/toxicity , Analysis of Variance , Animals , Body Weight/drug effects , Cytokines/metabolism , Disease Models, Animal , Dysferlin , Echocardiography , Female , Gene Expression Regulation/drug effects , In Vitro Techniques , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/complications , Pentacyclic Triterpenes
4.
Cell Mol Neurobiol ; 35(3): 377-387, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25392236

ABSTRACT

Multiple sclerosis is a chronic disease of the central nervous system characterized by an autoimmune inflammatory reaction that leads to axonal demyelination and tissue damage. Glucocorticoids, such as prednisolone, are effective in the treatment of multiple sclerosis in large part due to their ability to inhibit pro-inflammatory pathways (e.g., NFκB). However, despite their effectiveness, long-term treatment is limited by adverse side effects. VBP15 is a recently described compound synthesized based on the lazeroid steroidal backbone that shows activity in acute and chronic inflammatory conditions, yet displays a much-reduced side effect profile compared to traditional glucocorticoids. The purpose of this study was to determine the effectiveness of VBP15 in inhibiting inflammation and disease progression in experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of multiple sclerosis. Our data show that VBP15 is effective at reducing both disease onset and severity. In parallel studies, we observed that VBP15 was able to inhibit the production of NFκB-regulated pro-inflammatory transcripts in human macrophages. Furthermore, treatment with prednisolone-but not VBP15-increased expression of genes associated with bone loss and muscle atrophy, suggesting lack of side effects of VBP15. These findings suggest that VBP15 may represent a potentially safer alternative to traditional glucocorticoids in the treatment of multiple sclerosis and other inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Pregnadienediols/therapeutic use , Severity of Illness Index , Animals , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/pathology , Pregnadienediols/pharmacology , Pregnancy , Treatment Outcome
5.
Neuron ; 84(2): 432-41, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25308330

ABSTRACT

Declarative memories are thought to be stored within anatomically distributed neuronal networks requiring the hippocampus; however, it is unclear how neocortical areas participate in memory at the time of encoding. Here, we use a c-fos-based genetic tagging system to selectively express the channelrhodopsin variant, ChEF, and optogenetically reactivate a specific neural ensemble in retrosplenial cortex (RSC) engaged by context fear conditioning. Artificial stimulation of RSC was sufficient to produce both context-specific behavior and downstream cellular activity commensurate with natural experience. Moreover, optogenetically but not contextually elicited responses were insensitive to hippocampal inactivation, suggesting that although the hippocampus is needed to coordinate activation by sensory cues, a higher-order cortical framework can independently subserve learned behavior, even shortly after learning.


Subject(s)
Fear/physiology , Learning/physiology , Memory/physiology , Neocortex/physiology , Animals , Behavior, Animal/physiology , Conditioning, Psychological/physiology , Cues , Hippocampus/physiology , Mice, Inbred C57BL , Mice, Transgenic
6.
EMBO Mol Med ; 5(10): 1569-85, 2013 10.
Article in English | MEDLINE | ID: mdl-24014378

ABSTRACT

Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Myoblasts/drug effects , Pregnadienediols/pharmacology , Animals , Anti-Inflammatory Agents/toxicity , Cell Line , Cell Membrane/drug effects , Cell Membrane/physiology , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/toxicity , Lasers , Mice , Mice, Inbred mdx , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Myoblasts/cytology , Myoblasts/radiation effects , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Necrosis/etiology , Phenotype , Prednisolone/pharmacology , Prednisolone/toxicity , Pregnadienediols/toxicity , Protein Interaction Maps/drug effects , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Signal Transduction/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Transcription, Genetic/drug effects
7.
Arthritis Rheum ; 65(12): 3248-58, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24022788

ABSTRACT

OBJECTIVE: Myositis is characterized by severe muscle weakness. We and others have previously shown that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of myositis. The present study was undertaken to identify perturbed pathways and assess their contribution to muscle disease in a mouse myositis model. METHODS: Stable isotope labeling with amino acids in cell culture (SILAC) was used to identify alterations in the skeletal muscle proteome of myositic mice in vivo. Differentially altered protein levels identified in the initial comparisons were validated using a liquid chromatography tandem mass spectrometry spike-in strategy and further confirmed by immunoblotting. In addition, we evaluated the effect of a proteasome inhibitor, bortezomib, on the disease phenotype, using well-standardized functional, histologic, and biochemical assessments. RESULTS: With the SILAC technique we identified significant alterations in levels of proteins belonging to the ER stress response, ubiquitin proteasome pathway (UPP), oxidative phosphorylation, glycolysis, cytoskeleton, and muscle contractile apparatus categories. We validated the myositis-related changes in the UPP and demonstrated a significant increase in the ubiquitination of muscle proteins as well as a specific increase in ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1) in myositis, but not in muscle affected by other dystrophies or normal muscle. Inhibition of the UPP with bortezomib significantly improved muscle function and also significantly reduced tumor necrosis factor α expression in the skeletal muscle of mice with myositis. CONCLUSION: Our findings indicate that ER stress activates downstream UPPs and contributes to muscle degeneration and that UCHL-1 is a potential biomarker for disease progression. UPP inhibition offers a potential therapeutic strategy for myositis.


Subject(s)
Muscle, Skeletal/metabolism , Myositis/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Animals , Boronic Acids/pharmacology , Bortezomib , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Mice , Muscle Weakness/metabolism , Muscle Weakness/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myositis/pathology , Proteasome Inhibitors/pharmacology , Pyrazines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Ubiquitination/drug effects
8.
PLoS One ; 8(5): e63871, 2013.
Article in English | MEDLINE | ID: mdl-23667681

ABSTRACT

Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds) that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation--NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone--but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.


Subject(s)
Glucocorticoids/therapeutic use , Hypersensitivity/complications , Hypersensitivity/drug therapy , Pneumonia/complications , Pneumonia/drug therapy , Pregnadienediols/therapeutic use , Animals , Asthma/complications , Asthma/metabolism , Asthma/pathology , Cell Degranulation/drug effects , Cell Movement/drug effects , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Glucocorticoids/chemistry , Glucocorticoids/pharmacology , Humans , Leukocytes/drug effects , Leukocytes/physiology , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Osteogenesis/drug effects , Ovalbumin , Pregnadienediols/chemistry , Pregnadienediols/pharmacology , Tibia/drug effects , Tibia/pathology
9.
J Pharmacol Exp Ther ; 343(1): 225-32, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22743576

ABSTRACT

Glucocorticoids are standard of care for many inflammatory conditions, but chronic use is associated with a broad array of side effects. This has led to a search for dissociative glucocorticoids--drugs able to retain or improve efficacy associated with transrepression [nuclear factor-κB (NF-κB) inhibition] but with the loss of side effects associated with transactivation (receptor-mediated transcriptional activation through glucocorticoid response element gene promoter elements). We investigated a glucocorticoid derivative with a Δ-9,11 modification as a dissociative steroid. The Δ-9,11 analog showed potent inhibition of tumor necrosis factor-α-induced NF-κB signaling in cell reporter assays, and this transrepression activity was blocked by 17ß-hydroxy-11ß-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU-486), showing the requirement for the glucocorticoid receptor (GR). The Δ-9,11 analog induced the nuclear translocation of GR but showed the loss of transactivation as assayed by GR-luciferase constructs as well as mRNA profiles of treated cells. The Δ-9,11 analog was tested for efficacy and side effects in two mouse models of muscular dystrophy: mdx (dystrophin deficiency), and SJL (dysferlin deficiency). Daily oral delivery of the Δ-9,11 analog showed a reduction of muscle inflammation and improvements in multiple muscle function assays yet no reductions in body weight or spleen size, suggesting the loss of key side effects. Our data demonstrate that a Δ-9,11 analog dissociates the GR-mediated transcriptional activities from anti-inflammatory activities. Accordingly, Δ-9,11 analogs may hold promise as a source of safer therapeutic agents for chronic inflammatory disorders.


Subject(s)
Dronabinol/analogs & derivatives , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , NF-kappa B/antagonists & inhibitors , Response Elements/drug effects , Animals , Dose-Response Relationship, Drug , Dronabinol/chemistry , Dronabinol/pharmacology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , NF-kappa B/metabolism , Response Elements/physiology , Spleen/drug effects , Spleen/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...