Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(32): 9953-9960, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39102284

ABSTRACT

An interesting question is whether chalcogen atoms can emulate the role of carbon or boron elements stabilized between two transition metal layers, as observed in MXenes or MBenes. Here, we predict a new family of two-dimensional ternary compounds M4XY2 (where M = Pd, Y, Zr, etc.; X = S, Se, Te; and Y = Cl, Br, I), named M-chalcogene. Through first-principles calculations, we reveal diverse physical properties in these compounds, including superconducting, topological, and magnetic characteristics, where the bilayer transition metals play crucial roles. Moreover, the expected helical edge states and superconducting transition temperatures in Pd4SCl2 can be finely tuned by strains. Additionally, the Ti4SCl2 is predicted to be a topological insulator and shows promise as a gas sensor candidate for certain exotic gases. Our findings expand two-dimensional material families and provide promising platforms for diverse physical phenomena with efficient tunability by external stimuli for various applications.

2.
J Environ Manage ; 359: 121055, 2024 May.
Article in English | MEDLINE | ID: mdl-38701585

ABSTRACT

Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.


Subject(s)
Fertilizers , Greenhouse Gases , Soil , Greenhouse Gases/analysis , Soil/chemistry , Forests , Methane/analysis , Carbon Dioxide/analysis , Cunninghamia/growth & development , Global Warming , Nitrous Oxide/analysis , China
3.
Water Res ; 258: 121789, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772320

ABSTRACT

Recovery of ammonium from wastewater represents a sustainable strategy within the context of global resource depletion, environmental pollution and carbon neutralization. The present study developed an advanced self-reporting electroswitchable colorimetric platform (SECP) to realize smart ammonium recovery based on the electrically stimulated transformation of Prussian blue/Prussian white (PB/PW) redox couple. The key to SECP was the selectivity of ammonium adsorption, sensitivity of desorption to electric signals and visualability of color change during switchable adsorption/desorption transformation. The results demonstrated the electrochemical intercalation-induced selective adsorption of NH4+ (selectivity coefficient of 3-19 versus other cations) and deintercalation-induced desorption on the PB-film electrode. At applied voltage of 1.2 V for 20 min, the negatively charged PB-film electrode achieved the maximum adsorption capacity of 3.2 mmol g-1. Reversing voltage to -0.2 V for 20 min resulted in desorption efficiency as high as 99%, indicating high adsorption/desorption reversibility and cyclic stability. The Fe(III)/Fe(II) redox dynamics were responsible for PB/PW transformation during reversible intercalation/deintercalation of NH4+. Based on the blue/transparence color change of PB/PW, the quantitative relationship was established between amounts of NH4+ adsorbed and extracted RGB values by multiple linear regression (R2 = 0.986, RMSE = 0.095). Then, the SECP was created upon the unique capability of real-time monitoring and feedback of color change of electrode to realize the automatic control of NH4+ adsorption/desorption. During five cycles of tests, the adsorption process consistently peaked at an average value of 3.15±0.04 mmol g-1, while desorption reliably approached the near-zero average of 0.06±0.04 mmol g-1. The average time of duration was 19.6±1.67 min for adsorption and 18.8±1.10 min for desorption, respectively. With electroswitchability, selectivity and self-reporting functionalities, the SECP represents a paradigm shift in smart ammonium recovery from wastewater, making wastewater treatment and resource recovery more efficient, more intelligent and more sustainable.


Subject(s)
Ammonium Compounds , Colorimetry , Wastewater , Wastewater/chemistry , Water Pollutants, Chemical , Adsorption , Electrodes , Oxidation-Reduction
4.
Sci Bull (Beijing) ; 69(8): 1027-1036, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38423875

ABSTRACT

Electron-phonon interactions and electron-electron correlations represent two crucial facets of condensed matter physics. For instance, in a half-filled spin-1/2 anti-ferromagnetic chain, the lattice dimerization induced by electron-nucleus interaction can be intensified by onsite Coulomb repulsion, resulting in a spin-Peierls state. Through first-principles calculations and crystal structure prediction methods, we have identified that under mild pressures, potassium and ammonia can form stable compounds: R3¯m K(NH3)2, Pm3¯m K(NH3)2, and Cm K2(NH3)3. Our predictions suggest that the R3¯m K(NH3)2 exhibits electride characteristics, marked by the formation of interstitial anionic electrons (IAEs) in the interlayer space. These IAEs are arranged in quasi-two-dimensional triangular arrays. With increasing pressure, the electronic van-Hove singularity shifts toward the Fermi level, resulting in an augmented density of states and the onset of both Peierls and magnetic instabilities. Analyzing these instabilities, we determine that the ground state of the R3¯m K(NH3)2 is the dimerized P21/m phase with zigzag-type anti-ferromagnetic IAEs. This state can be described by the triangular-lattice antiferromagnetic Heisenberg model with modulated magnetic interactions. Furthermore, we unveil the coexistence and positive interplay between magnetic and Peierls instability, constituting a scenario of spin-Peierls instability unprecedented in realistic 2D materials, particularly involving IAEs. This work provides valuable insights into the coupling of IAEs with the adjacent lattice and their spin correlations in quantum materials.

5.
J Phys Condens Matter ; 36(16)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194718

ABSTRACT

The research on hydrogen-rich ternary compounds attract tremendous attention for it paves new route to room-temperature superconductivity at lower pressures. Here, we study the crystal structures, electronic structures, and superconducting properties of the ternary Ca-U-H system, combining crystal structure predictions withab-initiocalculations under high pressure. We found four dynamically stable structures with hydrogen clathrate cages: CaUH12-Cmmm, CaUH12-Fd-3m, Ca2UH18-P-3m1, and CaU3H32-Pm-3m. Among them, the Ca2UH18-P-3m1 and CaU3H32-Pm-3mare likely to be synthesized below 1 megabar. Thefelectrons in U atoms make dominant contribution to the electronic density of states around the Fermi energy. The electron-phonon interaction calculations reveal that phonon softening in the mid-frequency region can enhance the electron-phonon coupling significantly. TheTcvalue of Ca2UH18-P-3m1 is estimated to be 57.5-65.8 K at 100 GPa. Our studies demonstrate that introducing actinides into alkaline-earth metal hydrides provides possibility in designing novel superconducting ternary hydrides.

6.
J Chem Phys ; 159(18)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37942868

ABSTRACT

Inspired by the single-bonded nitrogen chains stabilized by tetravalent cerium, pentavalent tantalum, and hexavalent tungsten atoms, we explored the possibility of single-bonded nitrogen polymorphs stabilized by trivalent lanthanum ions. To achieve this, we utilized the crystal structure search method on the phase diagram of binary La-N compounds. We identified three novel thermodynamically stable phases, the C2/c LaN3, P-1 LaN4, and P-1 LaN8. Among them, the C2/c phase with infinite helical poly-N6 chains becomes thermodynamically stable above 50 GPa. Each nitrogen atom in the poly-N6 chain acquires one extra electron, and the spiral chain is purely single-bonded. The C2/c phase has an indirect band gap of ∼1.6 eV at 60 GPa. Notably, the band gap exhibits non-monotonic behavior, decreases first and then increases with increasing pressure. This abnormal behavior is attributed to the significant bonding of two La-N bonds at around 35 GPa. Phonon spectrum calculations and AIMD simulations have confirmed that the C2/c phase can be quenched to ambient conditions with slight distortion, and it exhibits excellent detonation properties. Additionally, we also discovered armchair-like nitrogen chains in LaN4 and the armchair and zigzag-like mixed nitrogen chains in LaN8. These results provide valuable insights into the electronic and bonding properties of nitrides under high pressure and may have important implications for the design and development of novel functional materials.

7.
Phys Rev Lett ; 131(14): 146101, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862650

ABSTRACT

Carbon is one of the most important elements for both industrial applications and fundamental research, including life, physics, chemistry, materials, and even planetary science. Although theoretical predictions on the transition from diamond to the BC8 (Ia3[over ¯]) carbon were made more than thirty years ago, after tremendous experimental efforts, direct evidence for the existence of BC8 carbon is still lacking. In this study, a machine learning potential was developed for high-pressure carbon fitted from first-principles calculations, which exhibited great capabilities in modeling the melting and Hugoniot line. Using the molecular dynamics based on this machine learning potential, we designed a thermodynamic pathway that is achievable for the double shock compression experiment to obtain the elusive BC8 carbon. Diamond was compressed up to 584 GPa after the first shock at 20.5 km/s. Subsequently, in the second shock compression at 24.8 or 25.0 km/s, diamond was compressed to a supercooled liquid and then solidified to BC8 in around 1 ns. Furthermore, the critical nucleus size and nucleation rate of BC8 were calculated, which are crucial for nano-second x-ray diffraction measurements to observe BC8 carbon during shock compressions. The key to obtaining BC8 carbon lies in the formation of liquid at a sufficient supercooling. Our work provides a feasible pathway by which the long-sought BC8 phase of carbon can be reached in experiments.

8.
Nat Commun ; 14(1): 4458, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491484

ABSTRACT

Helium, the second most abundant element in the universe, exhibits an extremely large electronic band gap of about 20 eV at ambient pressures. While the metallization pressure of helium has been accurately determined, thus far little attention has been paid to the specific mechanisms driving the band-gap closure and electronic properties of this quantum crystal in the terapascal regime (1 TPa = 10 Mbar). Here, we employ density functional theory and many-body perturbation calculations to fill up this knowledge gap. It is found that prior to reaching metallicity helium becomes an excitonic insulator (EI), an exotic state of matter in which electrostatically bound electron-hole pairs may form spontaneously. Furthermore, we predict metallic helium to be a superconductor with a critical temperature of ≈ 20 K just above its metallization pressure and of ≈ 70 K at 100 TPa. These unforeseen phenomena may be critical for improving our fundamental understanding and modeling of celestial bodies.

9.
Natl Sci Rev ; 10(7): nwad128, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37332628

ABSTRACT

Crystal structure predictions based on first-principles calculations have gained great success in materials science and solid state physics. However, the remaining challenges still limit their applications in systems with a large number of atoms, especially the complexity of conformational space and the cost of local optimizations for big systems. Here, we introduce a crystal structure prediction method, MAGUS, based on the evolutionary algorithm, which addresses the above challenges with machine learning and graph theory. Techniques used in the program are summarized in detail and benchmark tests are provided. With intensive tests, we demonstrate that on-the-fly machine-learning potentials can be used to significantly reduce the number of expensive first-principles calculations, and the crystal decomposition based on graph theory can efficiently decrease the required configurations in order to find the target structures. We also summarized the representative applications of this method on several research topics, including unexpected compounds in the interior of planets and their exotic states at high pressure and high temperature (superionic, plastic, partially diffusive state, etc.); new functional materials (superhard, high-energy-density, superconducting, photoelectric materials), etc. These successful applications demonstrated that MAGUS code can help to accelerate the discovery of interesting materials and phenomena, as well as the significant value of crystal structure predictions in general.

10.
World J Gastroenterol ; 29(20): 3157-3167, 2023 May 28.
Article in English | MEDLINE | ID: mdl-37346159

ABSTRACT

BACKGROUND: It has been confirmed that three-dimensional (3D) imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography (ERCP), which reduces the radiation dose and procedure time with improved safety. However, current 3D biliary imaging does not have good real-time fusion with intraoperative imaging, a process meant to overcome the influence of intraoperative respiratory motion and guide navigation. The present study explored the feasibility of real-time continuous image-guided ERCP. AIM: To explore the feasibility of real-time continuous image-guided ERCP. METHODS: We selected 2 3D-printed abdominal biliary tract models with different structures to simulate different patients. The ERCP environment was simulated for the biliary phantom experiment to create a navigation system, which was further tested in patients. In addition, based on the estimation of the patient's respiratory motion, preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP. RESULTS: Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm ± 0.13 mm and a tracking error of 0.64 mm ± 0.24 mm. After estimating the respiratory motion, 3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients, with an average fusion rate of 88%. CONCLUSION: Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.


Subject(s)
Biliary Tract , Cholangiopancreatography, Endoscopic Retrograde , Humans , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Biliary Tract/diagnostic imaging , Bile Ducts/diagnostic imaging , Bile Ducts/surgery , Contrast Media , Fluoroscopy
11.
J Chem Phys ; 158(17)2023 May 07.
Article in English | MEDLINE | ID: mdl-37132528

ABSTRACT

In this paper, we present a new module to predict the potential surface reconstruction configurations of given surface structures in the framework of our machine learning and graph theory assisted universal structure searcher. In addition to random structures generated with specific lattice symmetry, we made full use of bulk materials to obtain a better distribution of population energy, namely, randomly appending atoms to a surface cleaved from bulk structures or moving/removing some of the atoms on the surface, which is inspired by natural surface reconstruction processes. In addition, we borrowed ideas from cluster predictions to spread structures better between different compositions, considering that surface models of different atom numbers usually have some building blocks in common. To validate this newly developed module, we tested it with studies on the surface reconstructions of Si (100), Si (111), and 4H-SiC(11̄02)-c(2×2), respectively. We successfully gave the known ground states, as well as a new SiC surface model, in an extremely Si-rich environment.

12.
Nano Lett ; 23(6): 2121-2128, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36877932

ABSTRACT

Two-dimensional (2D) van der Waals heterostructures (VDWHs) containing a charge-density wave (CDW) and superconductivity (SC) have revealed rich tunability in their properties, which provide a new route for optimizing their novel exotic states. The interaction between SC and CDW is critical to its properties; however, understanding this interaction within VDWHs is very limited. A comprehensive in situ study and theoretical calculation on bulk 4Hb-TaSe2 VDWHs consisting of alternately stacking 1T-TaSe2 and 1H-TaSe2 monolayers are investigated under high pressure. Surprisingly, the superconductivity competes with the intralayer and adjacent-layer CDW order in 4Hb-TaSe2, which results in substantially and continually boosted superconductivity under compression. Upon total suppression of the CDW, the superconductivity in the individual layers responds differently to the charge transfer. Our results provide an excellent method to efficiently tune the interplay between SC and CDW in VDWHs and a new avenue for designing materials with tailored properties.

13.
Int J Biol Macromol ; 235: 123726, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36801299

ABSTRACT

Due to the inherent defect of flammability of polypropylene (PP), a novel and highly efficient carbon microspheres@layered double hydroxides@copper lignosulfonate (CMSs@LDHs@CLS) flame retardant was designed and prepared, which was attributed to the strong electrostatic interaction between carbon microspheres (CMSs), layered double hydroxides (LDHs) and lignosulfonate as well as the chelation effect of lignosulfonate on copper ions, and then it was incorporated into the PP matrix. Significantly, CMSs@LDHs@CLS not only observably improved its dispersibility in PP matrix, but also simultaneously achieved excellent flame retardant properties for composites. With the addition of 20.0 % CMSs@LDHs@CLS, the limit oxygen index of CMSs@LDHs@CLS and PP composites (PP/CMSs@LDHs@CLS) reached 29.3 % and achieved the UL-94 V-0 rating. Cone calorimeter tests indicated that the peak heat release rate, total heat release and total smoke production of PP/CMSs@LDHs@CLS composites exhibited declines of 28.8 %, 29.2 % and 11.5 %, respectively, compared with those of PP/CMSs@LDHs composites. These advancements were attributed to the better dispersibility of CMSs@LDHs@CLS in PP matrix and illustrated that CMSs@LDHs@CLS observably reduced fire hazards of PP. The flame retardant property of CMSs@LDHs@CLS might relate to condensed phase flame retardant effect of char layer and catalytic charring of copper oxides.


Subject(s)
Copper , Flame Retardants , Microspheres , Polypropylenes , Carbon , Hydroxides
14.
Inorg Chem ; 61(45): 18229-18237, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36326036

ABSTRACT

Pentagraphene frameworks with sp2 carbon atoms have significance in fundamental research studies and material science. Here, we find pentagon ribbons stacked in an AB sequence at the atomic scale within alkali metal atoms. A Pnma phase is favored on the Gibbs free energy landscape at moderate pressures and finite temperatures. Strong electron localization, covalent interactions, weak van der Waals interactions, and electronic repulsive interactions coexist in this ionic structure. Electronic bands with narrow direct gaps are flattened with double degeneracy to produce a small effective mass and van Hove singularity for the density of states, which enhances visible-light absorption and produces a thermoelectric power factor on crystals. Alkali metal atoms strongly scatter acoustic-optical phonons to reduce the lattice thermal conductivity to an ultralow level. These characteristics introduce potential thermoelectric effects into Pnma crystals. In addition, the alkali metal ions exhibit high delocalizations with superionic properties at high temperatures.

15.
Animals (Basel) ; 12(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35405822

ABSTRACT

Dimethoate (DT) is an environmental pollutant widely used in agricultural fields and home gardens. Studies have shown that exposure to DT causes reproductive defects in both male and female animals. However, the effects of DT exposure on oocyte maturation and the approach to counteract it are not yet known. Here, we investigated the toxicity of DT on porcine oocyte maturation and the protective effects of melatonin (MT) on DT-exposed oocytes. DT exposure with 1.5 mM partially inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion (pb1) during oocyte maturation. Parthenogenetically activated embryos derived from DT-exposed oocytes could not develop to the 2-cell and blastocyst stage. Furthermore, DT exposure led to a significant increase in the rates of misaligned chromosomes, disorganized spindles, and abnormal actin assembly. DT exposure severely disrupted the distribution patterns of mitochondria in oocytes but did not change the subcellular localizations of cortical granules. Importantly, MT supplementation rescued the meiotic and developmental defects of DT-exposed oocytes through repressing the generation of excessive reactive oxygen species (ROS) and autophagy, and DNA damage accumulation. These results demonstrate that melatonin protects against meiotic defects induced by DT during porcine oocyte maturation.

16.
ACS Appl Mater Interfaces ; 14(5): 7102-7108, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35089031

ABSTRACT

Nonvolatile memory (NVM) devices were fabricated by implanting a self-assembled monolayer (SAM) of functional dithienylethene (DTE) derivative on the gold nanoparticle (Au-NP) surface in a pentacene-based organic transistor. The Au-NPs and DTE served as a charge-trapping medium and tunneling barrier layer, respectively. The transfer characteristic of the NVM device showed a narrow hysteresis window and wide memory window, indicating that the DTE-SAM served as a variable barrier layer to regulate the trapping and detrapping of external free charges at the Au-NPs. The energy gap introduced by the DTE-SAM is modulated through photoisomerization between a ring-open form and a ring-closed form by absorbing UV or visible light. For a memory device, the ring-closed DTE allows more free charge injection into the trapping sites, and the ring-open one better retains the trapped charges. A longer anchoring alkanethiol chain at the DTE moiety can further extend the device's retention time. For the NVM operation, programming with the ring-closed DTE and then switching the DTE structure to the ring-open form for erasing can facilitate the charge trapping and charge retention with the same molecule compared to operating all in the ring-open form or all in the ring-closed form of DTE. The structural characterization and electronic characteristics of these devices are discussed in detail.

17.
Chemistry ; 26(61): 13948-13956, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32666566

ABSTRACT

A series of linear carboxylic acids containing diacetylenic units at different positions along the chain (C12 H25 (C≡C)2 (CH2 )n COOH, n=7-11) were vacuum-deposited on clean silica substrates. The morphologies of the initial films after UV irradiation were studied. A clear odd-even effect on the morphology of the initial film was observed in that, depending on the spacer length between the diacetylenic unit and carboxyl head group, rings or dendrites of acid dimer layers were obtained. A molecular dynamic simulation of the aggregation process suggests that two competing intermolecular interactions and thus aggregation directions are involved and modulated by the odd or even carbon chain length. Further modulation of the interaction by substitution of a phenyl group at the terminus of the chain or by changing the carboxyl head group to an amidobenzoic acid head group led to a similar odd-even effect but with different dimensions or trends, which can be rationalized similarly. These results give the opportunity to create aligned conjugated polymer chains of different dimensions through self-assembly for applications in molecular/organic electronics.

18.
Adv Sci (Weinh) ; 7(2): 1901001, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993278

ABSTRACT

Knowledge of interfacial interactions between analytes and functionalized sensor surfaces, from where the signal originates, is key to the development and application of electronic sensors. The present work explores the tunability of pH sensitivity by the synergy of surface charge and molecular dipole moment induced by interfacial proton interactions. This synergy is demonstrated on a silicon-nanoribbon field-effect transistor (SiNR-FET) by functionalizing the sensor surface with properly designed chromophore molecules. The chromophore molecules can interact with protons and lead to appreciable changes in interface dipole moment as well as in surface charge state. In addition, the dipole moment can be tuned not only by the substituent on the chromophore but also by the anion in the electrolyte interacting with the protonated chromophore. By designing surface molecules to enhance the surface dipole moment upon protonation, an above-Nernstian pH sensitivity is achieved on the SiNR-FET sensor. This finding may bring an innovative strategy for tailoring the sensitivity of the SiNR-FET-based pH sensor toward a wide range of applications.

19.
J Nat Prod ; 82(12): 3482-3488, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31763840

ABSTRACT

A new cyclic decapeptide, trikoramide A (1), has been isolated from samples of the marine cyanobacterium Symploca hydnoides, collected from Bintan Island, Indonesia. Trikoramide A (1) is a C-prenylated cyclotryptophan-containing cyanobactin. Its planar structure was deduced by 1D and 2D NMR spectroscopy as well as HR-MS/MS data. In addition, its absolute configuration was determined by Marfey's method and 2D NOESY NMR spectroscopic analysis. Compound 1 possessed cytotoxicity against the MOLT-4 and AML2 cancer cell lines with IC50 values of 4.8 and 8.2 µM, respectively.


Subject(s)
Antineoplastic Agents/isolation & purification , Cyanobacteria/metabolism , Seawater/microbiology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Prenylation , Spectrum Analysis/methods
20.
Mar Drugs ; 16(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551660

ABSTRACT

Certain strains of cyanobacteria produce a wide array of cyanotoxins, such as microcystins, lyngbyatoxins and aplysiatoxins, that are associated with public health issues. In this pilot study, an approach combining LC-MS/MS and molecular networking was employed as a rapid analytical method to detect aplysiatoxins present in four environmental marine cyanobacterial samples collected from intertidal areas in Singapore. Based on 16S-ITS rRNA gene sequences, these filamentous cyanobacterial samples collected from Pulau Hantu were determined as Trichodesmium erythraeum, Oscillatoria sp. PAB-2 and Okeania sp. PNG05-4. Organic extracts were prepared and analyzed on LC-HRMS/MS and Global Natural Product Social Molecular Networking (GNPS) for the presence of aplysiatoxin-related molecules. From the molecular networking, six known compounds, debromoaplysiatoxin (1), anhydrodebromoaplysiatoxin (2), 3-methoxydebromoaplysiatoxin (3), aplysiatoxin (4), oscillatoxin A (5) and 31-noroscillatoxin B (6), as well as potential new analogues, were detected in these samples. In addition, differences and similarities in molecular networking clusters related to the aplysiatoxin molecular family were observed in extracts of Trichodesmium erythraeum collected from two different locations and from different cyanobacterial species found at Pulau Hantu, respectively.


Subject(s)
Aquatic Organisms/chemistry , Lyngbya Toxins/analysis , Oscillatoria/chemistry , Trichodesmium/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , DNA, Bacterial/isolation & purification , Lyngbya Toxins/chemistry , Lyngbya Toxins/isolation & purification , Molecular Conformation , Oscillatoria/genetics , Pilot Projects , RNA, Ribosomal, 16S/genetics , Singapore , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods , Trichodesmium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL