Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
Front Pharmacol ; 15: 1465697, 2024.
Article in English | MEDLINE | ID: mdl-39193338

ABSTRACT

Mesenchymal stem cells (MSCs) are a type of pluripotent adult stem cell with strong self-renewal and multi-differentiation abilities. Their excellent biological traits, minimal immunogenicity, and abundant availability have made them the perfect seed cells for treating a wide range of diseases. After more than 60 years of clinical practice, metformin is currently one of the most commonly used hypoglycaemic drugs for type 2 diabetes in clinical practice. In addition, metformin has shown great potential in the treatment of various systemic diseases except for type 2 diabetes in recent years, and the mechanisms are involved with antioxidant stress, anti-inflammatory, and induced autophagy, etc. This article reviews the effects and the underlying mechanisms of metformin on the biological properties, including proliferation, multi-differentiation, and aging, of MSCs in vitro and in vivo with the aim of providing theoretical support for in-depth scientific research and clinical applications in MSCs-mediated disease treatment.

2.
Front Pharmacol ; 15: 1336249, 2024.
Article in English | MEDLINE | ID: mdl-39135806

ABSTRACT

Retinal neovascularization is a common feature of several ocular neovascular diseases, which are the leading cause of blindness in the world. Current treatments are administered through invasive intravitreal injections, leading to poor patient compliance, serious ocular complications and heavy economic burdens. Thus, an alternative less or non-invasive therapeutic strategy is in demand. Here, a non-invasive oral tyrosine kinase inhibitor, CM082, was evaluated in a retinal neovascularization model induced by hypoxia in zebrafish larvae. We found that CM082 effectively suppressed retinal neovascularization, rescued cell loss in the retinal ganglion cell layer, and rescued the visual function deficiency. Our results elucidated that CM082 mediated its therapeutic efficacy primarily through the inhibition of Vegfr2 phosphorylation. The findings demonstrated that CM082 possessed strong antiangiogenic effects and may serve as a potential treatment for angiogenesis in ocular neovascular diseases.

3.
Phytochemistry ; 229: 114267, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216632

ABSTRACT

In order to elucidate the mass fragmentation patterns and unveil more undescribed ophiobolin analogs, the mass fragmentation patterns of ophiobolins were analyzed based on UPLC-Q-TOF-MS/MS experiments. Different kinds of rearrangements (including McLafferty rearrangement) were the main cleavage patterns. Twenty-six (9-31) analogs were then tentatively characterized based on their mass analysis, and three undescribed ophiobolins (6-8) and a known analogue (5) were isolated in target. Compound 5 possesses a rare polycyclic carbon skeleton only recently reported, and compound 6 contains an undescribed lactone ring system fused with A/B ring at C-3/C-21, whereas compounds 7 and 8 have a peroxyl group in the side chain, which is the first reported in all ophiobolins. Compounds 5 and 7 displayed significant cytotoxicity against MCF-7 cancer cells.

4.
Hum Cell ; 37(5): 1276-1289, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38985391

ABSTRACT

The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.


Subject(s)
Bone Diseases , Extracellular Vesicles , Inflammasomes , Mesenchymal Stem Cells , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Humans , Mesenchymal Stem Cells/metabolism , Inflammasomes/metabolism , Inflammasomes/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/physiology , Bone Diseases/therapy , Bone Diseases/etiology , Joint Diseases/therapy , Pyroptosis , Interleukin-1beta/metabolism
5.
J Nat Prod ; 87(6): 1660-1665, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38888514

ABSTRACT

Chetocochliodin M (5) containing a rare cage-ring and chetocochliodin N (6) featuring an unusual piperazine-2,3-dione ring system together with known analogues chetomin (1), chetoseminudin C (2), chetocochliodin I (3), and oidioperazine E (4) were targeted for purification from the fungus Chaetomium cochliodes using a UPLC-Q-TOF-MS/MS approach. The structures of the new compounds were elucidated using HR-ESI-MS, NMR, and ECD spectra. Compounds 1, 3, and 6 exhibited strong cytotoxic activities against A549 and HeLa cancer cell lines.


Subject(s)
Chaetomium , Tandem Mass Spectrometry , Chaetomium/chemistry , Humans , Molecular Structure , Tandem Mass Spectrometry/methods , HeLa Cells , Chromatography, High Pressure Liquid/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Drug Screening Assays, Antitumor , A549 Cells , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/isolation & purification
6.
J AAPOS ; 28(4): 103938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796139

ABSTRACT

PURPOSE: To investigate the prevalence and body mass index (BMI) associations of congenital lower epiblepharon in children in China and the difference in the refractive errors between children with and without epiblepharon. METHODS: Children 6-12 years of age in Beichen District of Tianjin were screened for congenital epiblepharon from September to October 2017. All children underwent slit-lamp examination, strabismus screening, visual acuity examination and refraction. Weight and height were also recorded. The prevalence of lower epiblepharon in school-age children was evaluated, and its association with age, sex, BMI, and refractive error was analyzed. RESULTS: A total of 28,225 children were examined; 564 had epiblepharon. The prevalence of epiblepharon was found to be, for 6-year-olds, 2.50%; for 7-year-olds, 2.13%; for 8-year-olds, 2.10%; for 9-year-olds, 1.97%; for 10-year-olds, 1.85%; for 11-year-olds, 1.67%; and for 12-year-olds, 1.19% (P < 0.05). The prevalence of overweight and obesity in children with epiblepharon was found to be 16.7% and 47.2%, respectively. The prevalence and degree of astigmatism was higher than in nonepiblepharon children. We found a possible association between severity of astigmatism and severity of epiblepharon. CONCLUSIONS: In our study, the prevalence of epiblepharon decreased with advancing age, and the majority of children with epiblepharon were found to be overweight or obese. Epiblepharon was associated with astigmatism.


Subject(s)
Eyelid Diseases , Eyelids , Child , Female , Humans , Male , Body Mass Index , China/epidemiology , Cross-Sectional Studies , East Asian People , Eyelid Diseases/congenital , Eyelids/abnormalities , Prevalence , Refraction, Ocular , Refractive Errors/epidemiology , Visual Acuity
7.
J Ophthalmol ; 2024: 8817530, 2024.
Article in English | MEDLINE | ID: mdl-38765182

ABSTRACT

Purpose: To compare the refractive errors measured by the Spot photoscreener (with or without cycloplegia) to cycloplegic retinoscopy in 6- to 10-week-old infants. Materials and Methods: 101 right eyes from 101 healthy infants aged 6 to 10 weeks were recruited for this cross-sectional observational study. Refractive errors were measured using Spot photoscreener before and after cycloplegia, as well as cycloplegic retinoscopy. Comparisons between the refractive measurements were performed using one-way ANOVA with the post hoc Tukey HSD test or Kruskal-Wallis test with the Steel-Dwass test according to the data normality. Pearson's correlation test and 95% confidence intervals were calculated. The agreement was evaluated using a Bland-Altman plot with 95% limits of agreement of the differences. Results: Spot photoscreener was found to underestimate the spherical equivalent by 2.33 Diopters (D) in these infants. Following the induction of cycloplegia, the spherical equivalent measured by Spot photoscreener was in excellent agreement with cycloplegic retinoscopy with the mean difference of 0.01 D. Spot photoscreener overestimated cylindrical parameter by 0.2 D with poor agreement with cycloplegic retinoscopy no matter whether cycloplegia was induced. It had good agreement with cycloplegic retinoscopy in the J0 vector than the J45 vector measurement. Conclusions: With the induction of cycloplegia, Spot photoscreener can accurately evaluate spherical equivalent in hyperopic infants with mild-to-moderate astigmatism. While it may provide valuable measurements of astigmatism, discrepancies in cylinder and axis should be taken into account.

8.
Open Med (Wars) ; 19(1): 20240968, 2024.
Article in English | MEDLINE | ID: mdl-38799254

ABSTRACT

Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.

9.
Org Lett ; 26(21): 4469-4474, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767929

ABSTRACT

Using CRISPR-Cas9 technology and a microhomology-mediated end-joining repair system, we substituted genes of the gliotoxin pathway in Aspergillus fumigatus with genes responsible for chetomin biosynthesis from Chaetomium cochliodes, leading to the production of three new epipolythiodioxopiperazines (ETPs). This work represents the first successful endeavor to produce ETPs in a non-native host. Additionally, the simultaneous disruption of five genes in a single transformation marks the most extensive gene knockout event in filamentous fungi to date.


Subject(s)
Aspergillus fumigatus , Gliotoxin , Piperazines , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/genetics , Piperazines/chemistry , Piperazines/metabolism , Gliotoxin/biosynthesis , Gliotoxin/chemistry , Molecular Structure , Chaetomium/metabolism , Chaetomium/chemistry , CRISPR-Cas Systems
10.
Sci Rep ; 14(1): 10664, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724603

ABSTRACT

Kiwifruit soft rot is highly contagious and causes serious economic loss. Therefore, early detection and elimination of soft rot are important for postharvest treatment and storage of kiwifruit. This study aims to accurately detect kiwifruit soft rot based on hyperspectral images by using a deep learning approach for image classification. A dual-branch selective attention capsule network (DBSACaps) was proposed to improve the classification accuracy. The network uses two branches to separately extract the spectral and spatial features so as to reduce their mutual interference, followed by fusion of the two features through the attention mechanism. Capsule network was used instead of convolutional neural networks to extract the features and complete the classification. Compared with existing methods, the proposed method exhibited the best classification performance on the kiwifruit soft rot dataset, with an overall accuracy of 97.08% and a 97.83% accuracy for soft rot. Our results confirm that potential soft rot of kiwifruit can be detected using hyperspectral images, which may contribute to the construction of smart agriculture.


Subject(s)
Actinidia , Neural Networks, Computer , Plant Diseases , Actinidia/microbiology , Plant Diseases/microbiology , Deep Learning , Hyperspectral Imaging/methods , Fruit/microbiology , Image Processing, Computer-Assisted/methods
11.
Medicine (Baltimore) ; 103(18): e37991, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701321

ABSTRACT

Several observational studies have found that exposure to sunlight reduces the risk of colorectal cancer (CRC). However, sun exposure remains ambiguous in its relationship to CRC. We carried out a Mendelian randomization (MR) study to explore the potential associations between them. We examined the exposure to sunlight summary statistics of the UK Biobank Consortium using a 2-sample MR analysis. Using data from the FinnGen consortium, we derived summary statistics for CRC. We conducted our analysis with various methods, incorporating inverse variance weighted (IVW) along with 4 other approaches. A Cochran Q statistic was used to measure the heterogeneity of instrumental variables (IVs). We screened 133 single nucleotide polymorphisms (SNPs) (time spent outdoors in summer), 41 SNPs (time spent outdoors in winter), and 35 SNPs (frequency of solarium/sunlamp use) representing sunlight exposure for MR analysis. All selected SNPs had an F-statistic >20, indicating that IVs did not weakly bias the results. The summer outdoor activity trait exhibited significant heterogeneity (Cochran Q statistic = 183.795, P = .002 < 0.05), but we found no horizontal polymorphisms or significant heterogeneity for the other exposure traits. According to IVW estimates, no causal association exists between time spent outdoors in summer and CRC (Odds Ratio, OR = 0.735, 95% confidence interval, CI = 0.494-1.017, P = .128 > 0.017). No causal relationship existed between time spent outdoors in winter and CRC, as indicated by Bonferroni-corrected adjusted p-values. The OR was 0.877 with a 95% CI of 0.334-2.299, and the P value was .789, more significant than the significance threshold of 0.017. The solarium/sunlamp use frequency was not associated with CRC (OR = 1.567, 95%CI = 0.243-10.119, P = .637 > .017). Also, an IVW with random effects was applied to determine the causal relationship between summer outdoor time and CRC. No causal association between summer outdoor time and CRC was found (OR = 0.735, 95% CI = 0.494-1.017, P = .128 > .017). Additionally, 4 additional analyses yielded similar results. The findings of our study suggest that exposure to sunlight may reduce CRC risk, but the causal relationship remains unsolved. There is no evidence to suggest that exposure to sunlight prevents CRC. Randomized, controlled trials are needed to determine whether sunlight exposure protects against CRC.


Subject(s)
Colorectal Neoplasms , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sunlight , Humans , Sunlight/adverse effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Seasons , Risk Factors
12.
Front Med (Lausanne) ; 11: 1384500, 2024.
Article in English | MEDLINE | ID: mdl-38638937

ABSTRACT

The repair mechanism for corneal epithelial cell injuries encompasses migration, proliferation, and differentiation of corneal epithelial cells, and extracellular matrix remodeling of the stromal structural integrity. Furthermore, it involves the consequential impact of corneal limbal stem cells (LSCs). In recent years, as our comprehension of the mediating mechanisms underlying corneal epithelial injury repair has advanced, it has become increasingly apparent that growth factors play a pivotal role in this intricate process. These growth factors actively contribute to the restoration of corneal epithelial injuries by orchestrating responses and facilitating specific interactions at targeted sites. This article systematically summarizes the role of growth factors in corneal epithelial cell injury repair by searching relevant literature in recent years, and explores the limitations of current literature search, providing a certain scientific basis for subsequent basic research and clinical applications.

13.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636580

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Subject(s)
Blood Platelets , CD36 Antigens , Drugs, Chinese Herbal , Myocardial Reperfusion Injury , Platelet Activation , Platelet Aggregation , Rats, Sprague-Dawley , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Signal Transduction/drug effects , Male , Platelet Activation/drug effects , CD36 Antigens/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Platelet Aggregation/drug effects , Rats , Molecular Docking Simulation
14.
Curr Eye Res ; 49(7): 768-775, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616539

ABSTRACT

PURPOSE: This study aims to elucidate the longitudinal refractive and ocular biometric alterations in preschool children with high hyperopia who underwent early interventions. METHODS: We conducted a retrospective analysis of preschool children diagnosed with high hyperopia at Tianjin Medical University Eye Hospital between 2011 and 2023. Inclusion criteria required an initial examination with cycloplegic refraction, bilateral spherical equivalent power (SE) ≥ +5.00D with a difference <1.00D, a minimum two-year follow-up, and at least three ocular biometric measurements. The annual axial growth rate evaluated emmetropization in highly hyperopic children. We applied Restricted Cubic Spline (RCS) models to explore potential nonlinear relationships between age and spherical equivalent, axial length, corneal curvature, and axial length-to-corneal curvature ratio. Additionally, Mixed-effects models were employed to investigate factors associated with changes in refractive error and axial length. RESULTS: The study enrolled 60 eligible subjects, with a median initial diagnosis age of 3.5 years (IQR, 2.8-4.9 years) and a median last visit age of 9.3 years (IQR, 8.1-10.8 years). The average follow-up duration was 5.7 years. RCS analysis revealed notable nonlinear changes in spherical equivalent power, axial length, and axial length-to-corneal curvature ratio, although corneal curvature displayed no statistically significant nonlinear trend. Factors affecting SE changes included the presence of strabismus, the use of cycloplegia, baseline SE, and age. Conversely, changes in axial length solely correlated with baseline axial length and age. CONCLUSION: Highly hyperopic preschool children undergoing early intervention display a marked emmetropization tendency, though most still remain moderately to highly hyperopic, with the progression of refractive changes showing non-uniform patterns with respect to age.


Subject(s)
Axial Length, Eye , Hyperopia , Refraction, Ocular , Humans , Hyperopia/physiopathology , Hyperopia/diagnosis , Child, Preschool , Refraction, Ocular/physiology , Male , Retrospective Studies , Female , Follow-Up Studies , Axial Length, Eye/pathology , Visual Acuity/physiology , Child , Biometry , Cornea/physiopathology , Cornea/pathology , Eye Diseases, Hereditary
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 181-191, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597078

ABSTRACT

OBJECTIVES: To explore the mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking technology. METHODS: Potential targets of ginseng and periodontitis were obtained through various databases. The intersection targets of ginseng and periodontitis were obtained by using VENNY, the protein-protein interaction network relationship diagram was formed on the STRING platform, the core target diagram was formed by Cytoscape software, and the ginseng-active ingredient-target network diagram was constructed. The selected targets were screened for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The core targets of ginseng's active ingredients in treating periodontitis were analyzed by molecular docking technique. RESULTS: The 22 ginseng's active ingredients, 591 potential targets of ginseng's active ingredients, 2 249 periodontitis gene targets, and 145 ginseng-periodontitis intersection targets were analyzed. Ginseng had strong binding activity on core targets such as vascular endothelial growth factor A and epidermal growth factor receptor, as well as hypoxia induced-factor 1 (HIF-1) signaling pathway and phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. CONCLUSIONS: Ginseng and its active components can regulate several signaling pathways such as HIF-1 and PI3K-Akt, thereby indicating that ginseng may play a role in treating periodontitis through multiple pathways.


Subject(s)
Drugs, Chinese Herbal , Panax , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Network Pharmacology , Phosphatidylinositol 3-Kinases , Hypoxia
16.
J Agric Food Chem ; 72(9): 4518-4537, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386916

ABSTRACT

Asterric acid and its analogs belong to diphenyl ethers (DPEs) with multiple substitutions on A/B aromatic rings. This member of DPEs originates from the polyketide pathway and displays a wide range of biological effects. Though the structures of asterric acid analogs are not complex, there were only more than 50 asterric acid analogs found in nature from 1960 to 2023. In this review, the structures, bioactivities, and biosynthesis of asterric acid analogs are summarized. More importantly, the empirical rule about the shielding effect of B-ring on H-6 is suggested, and this provides a convenient and useful way to analyze the NMR spectral data of asterric acid analogs, based on which the chemical shift values of the A-ring in some asterric acid analogs are revised.


Subject(s)
Biology , Phenyl Ethers , Phenyl Ethers/chemistry , Magnetic Resonance Spectroscopy
17.
Histol Histopathol ; 39(9): 1109-1131, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38353136

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.


Subject(s)
Brain Injuries, Traumatic , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Brain Injuries, Traumatic/therapy , Humans , Mesenchymal Stem Cell Transplantation/methods , Animals , Cell Differentiation , Exosomes/transplantation , Exosomes/metabolism
18.
Small ; 20(28): e2311851, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38312088

ABSTRACT

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2O3/Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2O3/Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2. Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1.

19.
J Cell Mol Med ; 28(4): e18143, 2024 02.
Article in English | MEDLINE | ID: mdl-38333908

ABSTRACT

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Subject(s)
Nerve Growth Factor , Osteogenesis , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Dental Pulp , Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , RNA, Small Interfering/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Proliferation
20.
Fitoterapia ; 174: 105867, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382891

ABSTRACT

The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 µM. Among them, compound 3g (IC50 = 32.07 ± 2.00 µM) and compound 3n (IC50 = 34.78 ± 0.34 µM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Phenols , Humans , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL