Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Opt Lett ; 49(12): 3488-3491, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38875652

Low-cost broadband photodetectors (PDs) based on group-IV materials are highly demanded. Herein, a vertical all group-IV graphene-i-n (Gr-i-n) structure based on sputtering-grown undoped Ge0.92Sn0.08/Ge multiple quantum wells (MQWs) on n-Ge substrate was proposed to realize efficient visible/shortwave infrared (VIS/SWIR) dual-band photoresponse. Harnessing Gr-germanium tin (GeSn)/Ge MQWs van der Waals heterojunctions, an extended surface depletion region was established, facilitating separation and transportation of photogenerated carriers at VIS wavelengths. Consequently, remarkable VIS/SWIR dual-band response ranging from 400 to 2000 nm with a rapid response time of 23 µs was achieved. Compared to the PD without Gr, the external quantum efficiency at 420, 660, and 1520 nm was effectively enhanced by 10.2-, 5.2-, and 1.2-fold, reaching 40, 42, and 50%, respectively. This research paves the way for the advancement of all group-IV VIS/SWIR broadband PDs and presents what we believe to be a novel approach to the design of low-cost broadband PDs.

2.
Nanophotonics ; 12(2): 219-228, 2023 Jan.
Article En | MEDLINE | ID: mdl-36776470

In this work, scalable fabrication of self-assembled GeSn vertical nanowires (NWs) based on rapid thermal annealing (RTA) and inductively coupled-plasma (ICP) dry etching was proposed. After thermal treatment of molecular-beam-epitaxy-grown GeSn, self-assembled Sn nanodots (NDs) were formed on surface and the spontaneous emission from GeSn direct band was enhanced by ∼5-fold. Employing the self-assembled Sn NDs as template, vertical GeSn NWs with a diameter of 25 ± 6 nm and a density of 2.8 × 109 cm-2 were obtained by Cl-based ICP dry etching technique. A prototype GeSn NW photodetector (PD) with rapid switching ability was demonstrated and the optoelectronic performance of Ge NW PD was systematically studied. The GeSn NW PD exhibited an ultralow dark current density of ∼33 nA/cm2 with a responsivity of 0.245 A/W and a high specific detectivity of 2.40 × 1012 cm Hz1/2 W-1 at 1550 nm under -1 V at 77 K. The results prove that this method is prospective for low-cost and scalable fabrication of GeSn NWs, which are promising for near infrared or short wavelength infrared nanophotonic devices.

...