Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
Asian J Pharm Sci ; 19(2): 100891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584690

ABSTRACT

Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvß3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.

2.
Pharmaceutics ; 16(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399358

ABSTRACT

The Pharmaceutics Editorial Office retracts the article, "A Novel Drug Self-Delivery System from Fatty Alcohol Esters of Tranexamic Acid for Venous Malformation Sclerotherapy" [...].

3.
Biochem Biophys Res Commun ; 680: 135-140, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37738903

ABSTRACT

Venous malformations are a vascular disorder. Currently, the use of chemical sclerosing agents is a common clinical approach for the treatment of venous malformations. However, the effectiveness of existing sclerosing agents is unsatisfactory and often accompanied by severe side effects. In this study, we have developed a novel cationic surfactant-based sclerosing agent (POL-TA) by conjugating the plasmin inhibitor tranexamic acid (TA) with a nonionic surfactant polidocanol (POL) through an ester bond. POL-TA induces endothelial cell damage, triggering the coagulation cascade and thrombus formation. Moreover, it releases TA in vivo, which inhibits plasmin activity and the activation of matrix metalloproteinase (MMPs), thereby stabilizing the fibrin network of the thrombus and promoting vascular fibrosis. We have established a cell model using venous malformation endothelial cells and assessed the cellular damage and underlying mechanisms of POL-TA. The inhibitory effects of POL-TA on the plasmin-MMPs system were evaluated using MMP-9 activity assay kit. Additionally, the mice tail vein model was employed to investigate the vascular sclerosing effects and mechanisms of POL-TA.

4.
Acta Pharm Sin B ; 13(1): 315-326, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36815028

ABSTRACT

Wound infection is becoming a considerable healthcare crisis due to the abuse of antibiotics and the substantial production of multidrug-resistant bacteria. Seawater immersion wounds usually become a mortal trouble because of the infection of Vibrio vulnificus. Bdellovibrio bacteriovorus, one kind of natural predatory bacteria, is recognized as a promising biological therapy against intractable bacteria. Here, we prepared a B. bacteriovorus-loaded polyvinyl alcohol/alginate hydrogel for the topical treatment of the seawater immersion wounds infected by V. vulnificus. The B. bacteriovorus-loaded hydrogel (BG) owned highly microporous structures with the mean pore size of 90 µm, improving the rapid release of B. bacteriovorus from BG when contacting the aqueous surroundings. BG showed high biosafety with no L929 cell toxicity or hemolysis. More importantly, BG exhibited excellent in vitro anti-V. vulnificus effect. The highly effective infected wound treatment effect of BG was evaluated on mouse models, revealing significant reduction of local V. vulnificus, accelerated wound contraction, and alleviated inflammation. Besides the high bacterial inhibition of BG, BG remarkably reduced inflammatory response, promoted collagen deposition, neovascularization and re-epithelization, contributing to wound healing. BG is a promising topical biological formulation against infected wounds.

5.
Colloids Surf B Biointerfaces ; 220: 112864, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272286

ABSTRACT

Chlorambucil (CLB) is widely used in the treatment of solid tumors. However, CLB has poor water solubility, short half-life and side effects such as leucopenia and thrombocytopenia, in addition to the inhibition of tumor immune microenvironment. In our study, chlorambucil-chitosan (CLB-CS) prodrug micelles were successfully prepared, and glycyrrhetinic acid (GA) was selected, which could improve the immunosuppressive microenvironment and actively targeted liver cancer cells. At the tumor site, CLB blocked the cell cycle and promoted apoptosis. In addition, GA improved the tumor microenvironment by increasing the proportion of CD4+T and CD8+T cells at the tumor site, and promoting the differentiation of CD4+T cells into Th1 cells, thereby reducing the proportion of Treg and Th2 cell subsets, so as to offset the adverse factors of CLB against tumor immunity. By interfering with DNA replication and modulating the tumor microenvironment, GA/CLB-CS micelles enabled the effective treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Glycyrrhetinic Acid , Liver Neoplasms , Prodrugs , Humans , Chlorambucil/pharmacology , Carcinoma, Hepatocellular/drug therapy , Prodrugs/pharmacology , Prodrugs/therapeutic use , Glycyrrhetinic Acid/pharmacology , Micelles , Tumor Microenvironment , Liver Neoplasms/drug therapy , DNA Replication
6.
Small ; 18(30): e2201933, 2022 07.
Article in English | MEDLINE | ID: mdl-35789094

ABSTRACT

Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.


Subject(s)
Nanoparticles , Neoplasms , Acoustics , Cell Line, Tumor , Doxorubicin/pharmacology , Endothelium, Vascular , Erythrocyte Membrane , Humans , Infarction/drug therapy , Nanoparticles/therapeutic use , Neoplasms/drug therapy
7.
Int J Pharm ; 623: 121890, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35690307

ABSTRACT

It is well known that the difficulty of siRNA therapeutic application is the lack of safe and effective delivery vector. Virosome is a nano vesicle composed of lipid membrane and membrane protein. It retains fusion protein without virus genetic material, and therefore has the reduced immunogenicity compared with viral vector. Virosomes have the potential to deliver protein and nucleic acid drugs, but the traditional preparation method of virosomes is quite limited. In this study, we firstly proposed to synthesize influenza virus hemagglutinin HA2 virosomes by cell-free protein synthesis. In this study, liposomes provided the hydrophobic lipid bilayer environment for the formation of HA2 protein multimer, which inhibited the aggregation of hydrophobic HA2 and improved HA2 protein expression. Chitosan as a rigid core adsorbed siRNA and improved the encapsulation efficiency of siRNA. In conclusion, the cell-free protein synthesis was used to prepare HA2 virosomes, which paves the way for constructing a novel nano vector with high delivery efficiency and biosafety for the delivery of siRNA.


Subject(s)
Orthomyxoviridae , Virosomes , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinins , Liposomes , Orthomyxoviridae/genetics , Orthomyxoviridae/metabolism , RNA, Small Interfering/genetics
8.
J Mater Chem B ; 10(22): 4226-4241, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35579224

ABSTRACT

Photothermal nanoparticles have been confirmed to induce an antitumor immune response and turn "cold tumor" into "hot tumor". However, their delivery efficacy to tumors is limited by the elimination from the reticalendothel system. Herein, human serum albumin (HSA)-imprinted polymer coated Fe3O4 nanoparticles (Fe3O4@MIPs) are fabricated by oxidative polymerization of dopamine in the presence of HSA on the polydopamine pre-modified Fe3O4 nanoparticle surface, followed by the removal of HSA. The Fe3O4@MIPs exhibit rapid and specific reabsorption toward HSA. The molecularly imprinted sites on the Fe3O4@MIPs endow it with an albumin-rich protein corona in the blood and result in less elimination from the reticalendothel system than non-albumin-imprinted particles (Fe3O4@NIPs). Moreover, the molecularly imprinted polymer, which consists of polydopamine, also improves the photothermal effect of Fe3O4 nanoparticles. In vivo, the albumin camouflage in Fe3O4@MIPs produces a 2.6-fold improvement in tumor accumulation in comparison to Fe3O4@NIPs, and more heat is produced upon 808 nm laser irradiation, which further triggers an efficient immunogenic cell death (ICD) progress. Thus, the combination of Fe3O4@MIPs and PD-L1 antibody can not only inhibit the growth of primary tumors but also eliminates lung metastasis by eliciting immunological effect.


Subject(s)
Nanoparticles , Serum Albumin, Human , Humans , Immunotherapy , Polymerization
9.
Drug Des Devel Ther ; 16: 1515-1530, 2022.
Article in English | MEDLINE | ID: mdl-35611358

ABSTRACT

Objective: Gastric cancer is one of the most lethal malignancies in the world. However, the current research on the diagnosis and treatment of nano-ultrasound contrast agents in the field of tumor is mostly focused on breast cancer, ovarian cancer, prostate cancer, liver cancer, etc. Due to the interference of gas in the stomach, there is no report on the treatment of gastric cancer. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) therapy system is the most mature tumor suicide gene in cancer treatment. At the same time, in order to improve its safety and efficiency, we designed a gastric tumor targeted ultrasound-triggered phase-transition nano ultrasound contrast agent PFH/AGM-CBA/HSV-TK/Liposome (PAHL)-Affibody complex. Methods: In our study, guanidinylated SS-PAAs polymer poly(agmatine/N, N'-cystamine-bis-acrylamide) (AGM-CBA) was used as a nuclear localization vector of suicide gene to form a polyplex, perfluorohexane (PFH) was used as ultrasound contrast agent, liposomes were used to encapsulate perfluorohexane droplets and the polyplexes of AGM-CBA/HSV-TK, and affibody molecules were conjugated to the prepared PAHL in order to obtain a specific targeting affinity to human epidermal growth factor receptor type 2 (ErbB2) at gastric cancer cells. With the aid of ultrasound targeted microbubble destruction technology and the nuclear localization effect of AGM-CBA vector, the transfection efficiency of the suicide gene in gastric cancer cells was significantly increased, leading to significant apoptosis of gastric cancer cells. Results: It was shown that PAHL-Affibody complex was nearly spherical with an average diameter of 560 ± 28.9 nm, having higher and specific affinity to ErbB2 (+) gastric cells. In vitro experiments further confirmed that PAHL could target gastric cancer cells expressing ErbB2. In a contrast-enhanced ultrasound scanning study, the prepared ultrasound-triggered phase-change nano-ultrasound contrast agent, PAHL, showed improved ultrasound enhancement effects. With the application of the low-frequency ultrasound, the gene transfection efficiency of PAHL was significantly improved,  thereby inducing significant apoptosis in gastric cancer cells. Conclusion: This study constructs PFH/AGM-CBA/HSV-TK/Liposome-Affibody nano ultrasound contrast agent, which provides new ideas for the treatment strategy of ErbB2-positive gastric cancer and provides some preliminary experimental basis for its inhibitory effect.


Subject(s)
Stomach Neoplasms , Thymidine Kinase , Antiviral Agents/pharmacology , Contrast Media/pharmacology , Fluorocarbons , Ganciclovir/pharmacology , Humans , Liposomes/pharmacology , Male , Receptor, ErbB-2 , Simplexvirus/genetics , Simplexvirus/metabolism , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/drug therapy , Thymidine Kinase/genetics , Thymidine Kinase/metabolism , Transfection , Ultrasonography
10.
Acta Biomater ; 146: 197-210, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35487423

ABSTRACT

Exposure to a nuclear accident or a radiological attack may cause serious death events due to ionizing radiation-induced injury and acute radiation syndrome (ARS). Recombinant human granulocyte colony-stimulating factor (G-CSF) is now used for the treatment of ARS. However, the current injection formulation might not ensure treatment as early as possible after a nuclear accident, resulting in a decrease in therapeutic efficiency. In the present study, we have developed a G-CSF wearable system (GWS) consisting of a commercial microchip, a temperature sensor, a gamma-ray detection sensor, a flexible heater, and a G-CSF temperature-sensitive microneedle (GTSMN) patch. G-CSF-containing hyaluronic acid solutions were cast into the mold to obtain G-CSF microneedles (GMNs), which were coated with a temperature-sensitive layer of dodecanoic acid-cetylamine salt to obtain GTSMNs. The flexible heater was prepared by jet printing Ag nanoparticle inks. The GWS and its components are explored and optimized in the aspects of electronics, mechanics, heat transfer and drug diffusion. The γ radiation signal is sensitively monitored by the GWS. The wearable G-CSF system immediately releases G-CSF into the body in response to signal feedback and provides maximal protection against ionizing radiation-induced injury. Therefore, the GWS is a promising wearable system against emergent ionizing radiation injury. STATEMENT OF SIGNIFICANCE: Ionizing radiation-induced injury is always the very important public health problem all the global people care. Some medicines have been applied to protect the body from the injury. Unfortunately, sometimes the injuries accidently happen and the medicines cannot be administered in time, leading to serious acute radiation syndrome. Here, we design a wearable system loading G-CSF that has been approved by FDA to protect the body from ionizing radiation-induced injury. This system consists of a commercial microchip, a temperature sensor, a Gamma-ray detection sensor, a flexible heater, and a G-CSF temperature-sensitive microneedle patch. It can monitor γ radiation and immediately release G-CSF into the body to protect the body to the maximal extent. Therefore, the system is a promising wearable medical device against emergent ionizing radiation injury.


Subject(s)
Acute Radiation Syndrome , Metal Nanoparticles , Wearable Electronic Devices , Acute Radiation Syndrome/drug therapy , Gamma Rays , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Radiation, Ionizing , Recombinant Proteins/therapeutic use , Silver
11.
Pharmaceutics ; 14(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35214075

ABSTRACT

Venous malformation (VM), which causes severe damage to patients' appearance and organ function, is one of the most common vascular malformations. At present, many drugs in clinical treatment cause various adverse reactions. Herein, we synthesized cationic amphiphilic gelators (TA6, TA8, and TA9) by introducing saturated carbon chains of different lengths to tranexamic acid (TA), which could self-assemble into low-molecular-weight gels (LMWGs) as drug delivery carriers by hydrogen bonds, van der Waals forces, and hydrophobic interactions. The rheological properties, gelation driving force and drug release profiles of TA6, TA8, and TA9 hydrogels were characterized, and the results indicated that the hydrogels prepared in this study possessed the typical characteristics of a gel and could release drugs slowly. More importantly, the TA9 gelator showed significant pharmacological activity, in that it served as both an active drug compound and a drug carrier. The in vitro experiments demonstrated that TA9 induced HUVECs death and hemolysis by destroying cell membranes in a dose-dependent manner, and caused cell death and hemolysis at a concentration of 0.09 µM/mL. Meanwhile, we found TA9 could interact not only with fibrinogen, but also with other endogenous molecules in the blood. After the administration of TA9 hydrogel for 15 days, macroscopic imaging and histological evaluation in mice and rabbits displayed obvious thrombi, inflammatory reactions, and venous embolization, indicating that the mechanism of the TA9 hydrogel in treating VM was involved in two processes. Firstly, the TA9 hydrogel relied on its mechanical strength to physically block veins and continuously release TA9, in situ, for targeted therapy. Then, TA9 destroyed endothelial cells and damaged venous walls critically, causing thrombi. Most excitingly, TA9 was hydrolyzed to TA by enzymes that inhibited the degradation of thrombi by plasmin to prolong the embolization time and to promote venous fibrosis. Compared with other clinically available sclerosants, the degradation of TA9 also empowered a better biocompatibility and biodegradability for the TA9 hydrogel. In conclusion, we synthesized a potentially safe and effective derivative of TA and developed a low-molecular-weight gel as a self-delivery system for TA in treating VM.

12.
Acta Pharm Sin B ; 11(8): 2488-2504, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34567958

ABSTRACT

Three-dimensional printing is a technology that prints the products layer-by-layer, in which materials are deposited according to the digital model designed by computer aided design (CAD) software. This technology has competitive advantages regarding product design complexity, product personalization, and on-demand manufacturing. The emergence of 3D technology provides innovative strategies and new ways to develop novel drug delivery systems. This review summarizes the application of 3D printing technologies in the pharmaceutical field, with an emphasis on the advantages of 3D printing technologies for achieving rapid drug delivery, personalized drug delivery, compound drug delivery and customized drug delivery. In addition, this article illustrates the limitations and challenges of 3D printing technologies in the field of pharmaceutical formulation development.

13.
J Drug Target ; 28(9): 923-932, 2020 11.
Article in English | MEDLINE | ID: mdl-32312081

ABSTRACT

Biguanides (i.e. metformin, phenformin and buformin) are antidiabetic drugs with potential antitumor effects. Herein, a polycationic polymer, N,N'-bis(cystamine)acrylamide-buformin (CBA-Bu), containing multiple biodegradable disulphide bonds and buformin-mimicking side chains was synthesised. CBA-Bu was equipped with high efficiency and safety profile for gene delivery, meanwhile exhibiting potential antitumor efficacy. As a gene vector, CBA-Bu was able to condense plasmid DNA (pDNA) into nano-sized (<200 nm), positively-charged (>30 mV) uniform polyplexes that were well resistant to heparin and DNase I. Due to the reduction responsiveness of the disulphide bonds, CBA-Bu/pDNA polyplexes could release the loaded pDNA in the presence of dithiothreitol, and induce extremely low cytotoxicity in NIH/3T3 and U87 MG cells. The transfection results showed that CBA-Bu had a cellular uptake efficiency comparable to 25 kDa PEI, while a significantly higher gene expression level. Additionally, CBA-Bu had a lower IC50 value than its non-biguanide counterpart in two cancer cell lines. Furthermore, CBA-Bu could activate AMPK and inhibit mTOR pathways in U87 MG cells, a mechanism involved in the antitumor effect of biguanides. Taken together, CBA-Bu represented an advanced gene vector combining desirable gene delivery capability with potential antitumor activity, which was promising to achieve enhanced therapeutic efficacy in antitumor gene therapy.


Subject(s)
Buformin/chemistry , Buformin/pharmacology , Genetic Therapy/methods , Neoplasms/therapy , Polyamines/chemistry , Polyamines/pharmacology , AMP-Activated Protein Kinases/drug effects , Animals , Buformin/administration & dosage , Cell Line, Tumor , Gene Transfer Techniques , Genetic Vectors , Humans , Inhibitory Concentration 50 , Mice , NIH 3T3 Cells , Nanoparticles , Plasmids , Polyamines/administration & dosage
14.
Acta Biomater ; 97: 93-104, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31386928

ABSTRACT

Adenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of Ad vectors and well accomplished to evade the host immune response, block CAR-dependant cellular uptake, and reduce accumulation in the liver. In addition, shielding Ad vectors with targeted polymers (including targeting ligand-conjugated polymers and bio-responsive polymers) can also efficiently retarget Ad vectors to tumor tissues and reduce their distribution in nontargeted tissues. With its potential to evade the immune response and retarget Ad vectors, modification with polymers has been generally regarded as a promising strategy to facilitate the clinical applications of Ad vectors for virotherapy. STATEMENT OF SIGNIFICANCE: There is no doubt that Adenovirus (Ads) are attractive vectors for gene therapy, with high sophistication and effectiveness in overcoming both extra- and intracellular barriers, which cannot be exceeded by any other nonviral gene vectors. Unfortunately, their clinical applications are still restricted by some critical hurdles, including immunogenicity and native broad tropism. Therefore, a variety of elegant strategies have been developed from various angles to address these hurdles. Among these various strategies, coating Ads with nonimmunogenic polymers has attracted much attention. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. In addition, the key factors in Ad modification with polymers have been highlighted and summarized to provide guiding theory for the design of more effective and safer polymer-Ad hybrid gene vectors.


Subject(s)
Adenoviridae , Genetic Therapy , Genetic Vectors , Immune Evasion/drug effects , Polyethylene Glycols/therapeutic use , Transduction, Genetic , Viral Tropism , Animals , Genetic Vectors/immunology , Genetic Vectors/therapeutic use , Humans , Viral Tropism/drug effects , Viral Tropism/immunology
15.
Colloids Surf B Biointerfaces ; 182: 110355, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31306828

ABSTRACT

Inspired by the excellent membrane affinity of antimicrobial polymers, we synthesized a novel biodegradable poly(amino amine) polymer with pendent side chains that mimic the widely used biocide polyhexamethylene biguanide (PHMB) for gene delivery. Michael addition polymerization was utilized to form the polymer scaffold between N,N'-cystaminebisacrylamide (CBA) and N-Boc-1,6-diaminohexane (Boc-DAH) followed by N-Boc deprotection. Then the exposed primary amino groups were partly (about 75%) transformed into biguanide by an addition reaction with dicyandiamide to obtain the final product CBA-DAH-biguanide (CBA-DAH-BG). The polymer CBA-DAH-BG was able to condense plasmid DNA (pDNA) into nano-sized (<200 nm), positively-charged (>35 mV) polyplexes that were well resistant to heparin and DNase I. Rapid DNA release was observed in the presence of dithiothreitol (DTT), indicating that CBA-DAH-BG was equipped with biodegradability by the cleavage of disulfide bonds, which was helpful for unpacking DNA and decreasing cytotoxicity. CBA-DAH-BG/pDNA polyplexes were characterized by efficient cellular uptake efficacy, extremely low cytotoxicity, and high transfection efficiency in two cell lines (i.e., NIH/3T3 and U87 MG), compared to 25 kDa polyethyleneimine (PEI) and the intermediate product CBA-DAH that were both devoid of biguanide groups. Of note, clathrin-mediated endocytosis and lipid rafts played an important role in the internalization of the polyplexes. Taken together, this strategy described herein may represent an innovative avenue for the design of more advanced nonviral gene vectors with high transfection efficiency and biocompatibility.


Subject(s)
Anti-Infective Agents/chemical synthesis , Biguanides/chemical synthesis , Gene Transfer Techniques , Plasmids/metabolism , Polyethyleneimine/chemistry , Acrylamides/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Biguanides/metabolism , Biguanides/pharmacology , Cell Line, Tumor , Deoxyribonuclease I/chemistry , Diamines/chemistry , Dithiothreitol/chemistry , Endocytosis , Genes, Reporter , Heparin/chemistry , Hexanes/chemistry , Humans , Hydrolysis , Luciferases/genetics , Luciferases/metabolism , Mice , NIH 3T3 Cells , Neuroglia/drug effects , Neuroglia/pathology , Plasmids/chemistry , Polyethyleneimine/toxicity
16.
Acta Biomater ; 96: 517-536, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31284098

ABSTRACT

Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform, due to their specific composition and biological properties. However, challenges like considerable complexity, low isolation yield, drug payload, and potential safety concerns substantially reduce their pharmaceutical acceptability. Given that the nano-bio-interface is a crucial factor for nanocarrier behavior and function, modification of synthetic nanoparticles with the intrinsic hallmarks of exosomes' membrane to create exosome mimetics could allow for siRNA delivery in a safer and more efficient manner. Herein, connexin 43 (Cx43)-embedded, exosome-mimicking lipid bilayers coated chitosan nanoparticles (Cx43/L/CS NPs) were constructed by using cell-free (CF) synthesis systems with plasmids encoding Cx43 in the presence of lipid-coated CS NPs (L/CS NPs). The integration of de novo synthesized Cx43 into the lipid bilayers of L/CS NPs occurred cotranslationally during one-pot reaction and, more importantly, the integrated Cx43 was functionally active in transport. In addition to considerably lower cytotoxicity (

Subject(s)
Biomimetic Materials , Connexin 43 , Drug Delivery Systems , Exosomes/chemistry , Nanoparticles/chemistry , RNA, Small Interfering , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Cell-Free System , Connexin 43/biosynthesis , Connexin 43/chemistry , Connexin 43/pharmacokinetics , Connexin 43/pharmacology , HEK293 Cells , Humans , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/pharmacology
17.
J Cell Biochem ; 120(10): 16967-16977, 2019 10.
Article in English | MEDLINE | ID: mdl-31099062

ABSTRACT

At present, nonviral gene vectors develop rapidly, especially cationic polymers. A series of bioreducible poly(amide amine) (PAA) polymers containing guanidino groups have been synthesized by our research team. These novel polymer vectors demonstrated significantly higher transfection efficiency and lower cytotoxicity than polyethylenimine (PEI)-25kDa. However, compared with viral gene vectors, relatively low transfection efficiency, and high cytotoxicity are still critical problems confronting these polymers. In this study, poly(agmatine/N,N'-cystamine-bis-acrylamide) p(AGM-CBA) was selected as a model polymer, nuclear localization signal (NLS) peptide PV7 (PKKKRKV) with good biocompatibility and nuclear localization effect was introduced to investigate its impact on transfection efficiency and cytotoxicity. NLS peptide-mediated in vitro transfection was performed in NIH 3T3 cells by directly incorporating NLS peptide with the complexes of p(AGM-CBA)/pDNA. Meanwhile, the transfection efficiency and cytotoxicity of these complexes were evaluated. The results showed that the transfection efficiency could be increased by 5.7 times under the appropriate proportion, and the cytotoxicity brought by the polymer vector could be significantly reduced.


Subject(s)
Acrylamides/toxicity , Agmatine/toxicity , DNA/chemistry , Nuclear Localization Signals/pharmacology , Polyamines/toxicity , 3T3 Cells , Animals , Cell Line , Cell Membrane/physiology , Mice , Nuclear Localization Signals/chemistry , Transfection
18.
Cell Biol Int ; 43(7): 789-798, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31042002

ABSTRACT

As a cationic non-viral gene delivery vector, poly(agmatine/ N, N'-cystamine-bis-acrylamide) (AGM-CBA) showed significantly higher plasmid DNA (pDNA) transfection ability than polyethylenimine (PEI) in NIH/3T3 cells. The transfection expression of AGM-CBA/pDNA polyplexes was found to have a non-linear relationship with AGM-CBA/pDNA weight ratios. To further investigate the mechanism involved in the transfection process of poly(AGM-CBA), we used pGL3-control luciferase reporter gene (pLUC) as a reporter pDNA in this study. The distribution of pLUC in NIH/3T3 cells and nuclei after AGM-CBA/pLUC and PEI/pLUC transfection were determined by quantitative polymerase chain reaction (qPCR) analysis. The intracellular trafficking of the polyplexes was evaluated by cellular uptake and nuclei delivery of pLUC, and the intracellular availability was evaluated by the ratio of transfection expression to the numbers of pLUC delivered in nuclei. It was found that pLUC intracellular trafficking did not have any correlation with the transfection expression, while an excellent correlation was found between the nuclei pLUC availability and transfection expression. These results suggested that the intracellular availability of pLUC in nuclei was the rate-limiting step for pLUC transfection expression. Further optimization of the non-viral gene delivery system can be focused on the improvement of gene intracellular availability.


Subject(s)
Cell Nucleus/metabolism , Genes, Reporter/genetics , Luciferases/genetics , Luciferases/metabolism , Plasmids/genetics , Transfection/methods , Acrylamides/chemistry , Agmatine/chemistry , Animals , Mice , NIH 3T3 Cells , Polyethyleneimine/chemistry
19.
Acta Biomater ; 86: 15-40, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30590184

ABSTRACT

In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.


Subject(s)
Anti-Infective Agents/pharmacology , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Structure-Activity Relationship
20.
J Pharm Sci ; 108(2): 977-986, 2019 02.
Article in English | MEDLINE | ID: mdl-30315810

ABSTRACT

Levetiracetam therapy is often associated with high levels of individual variation in the recommended dose required to achieve preferential treatment. Thus, a reliable and dynamic regulation system to accurately tailor dose is necessary. The main objective of this study is to explore and prepare a dose-flexible control system suitable for rapid release tablets equipped with high drug loading and a cylindrical model design. Semi-solid extrusion 3-dimensional printing was utilized to fabricate a series of tablets of increased volume. This method was compatible with 3 patterns to regulate the volumes to manipulate the tablet mass and achieve tailored personalized precision dosing. All tablets from each pattern exhibited a smooth surface and regular shape, as well as sufficient mechanical strength. A good linear correlation between the mass and theoretical volume of the tablets was maintained, regardless of the pattern used. The range of dose accuracy was between 103.3% and 96.2%, with an acceptable variation coefficient in the range of 0.6%-3.2%. Faster release behavior for levetiracetam can be achieved from the small-sized tablets due to their larger surface area/mass ratio. All the results demonstrated the potential and capability of semi-solid extrusion 3-dimensional printing as a novel pharmaceutical manufacturing technique to provide a dynamic and highly accurate controllable system for preparing patient-tailored medicines.


Subject(s)
Anticonvulsants/chemistry , Drug Compounding/instrumentation , Levetiracetam/chemistry , Printing, Three-Dimensional , Anticonvulsants/administration & dosage , Drug Liberation , Levetiracetam/administration & dosage , Solubility , Tablets , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL