Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958513

ABSTRACT

3D asymmetries are major degradation mechanisms in inertial-confinement fusion implosions at the National Ignition Facility (NIF). These asymmetries can be diagnosed and reconstructed with the neutron imaging system (NIS) on three lines of sight around the NIF target chamber. Conventional tomographic reconstructions are used to reconstruct the 3D morphology of the implosion using NIS [Volegov et al., J. Appl. Phys. 127, 083301 (2020)], but the problem is ill-posed with only three imaging lines of sight. Asymmetries can also be diagnosed with the real-time neutron activation diagnostics (RTNAD) and the neutron time-of-flight (nToF) suite. Since the NIS, RTNAD, and nToF each sample a different part of the implosion using different physical principles, we propose that it is possible to overcome the limitations of too few imaging lines of sight by performing 3D reconstructions that combine information from all three heterogeneous data sources. This work presents a new machine learning-based reconstruction technique to do just this. By using a simple physics model and group of neural networks to map 3D morphologies to data, this technique can easily account for data of multiple different types. A simple proof-of-principle is presented, demonstrating that this technique can accurately reconstruct a hot-spot shape using synthetic primary neutron images and a hot-spot velocity vector. In particular, the hot-spot's asymmetry, quantified as spherical harmonic coefficients, is reconstructed to within ±4% of the radius in 90% of test cases. In the future, this technique will be applied to actual NIS, RTNAD, and nToF data to better understand 3D asymmetries at the NIF.

2.
Phys Rev E ; 109(5-2): 055201, 2024 May.
Article in English | MEDLINE | ID: mdl-38907485

ABSTRACT

We provide analytic expressions for the effective Coulomb logarithm for inverse bremsstrahlung absorption which predict significant corrections to the Langdon effect and overall absorption rate compared to previous estimates. The calculation of the collisional absorption rate of laser energy in a plasma by the inverse bremsstrahlung mechanism usually makes the approximation of a constant Coulomb logarithm. We dispense with this approximation and instead take into account the velocity dependence of the Coulomb logarithm, leading to a more accurate expression for the absorption rate valid in both classical and quantum conditions. In contrast to previous work, the laser intensity enters into the Coulomb logarithm. In most laser-plasma interactions the electron distribution function is super-Gaussian [Langdon, Phys. Rev. Lett. 44, 575 (1980)0031-900710.1103/PhysRevLett.44.575], and we find the absorption rate under these conditions is increased by as much as ≈30% compared to previous estimates at low density. In many cases of interest the correction to Langdon's predicted reduction in absorption is large; for example at Z=6 and T_{e}=400eV the Langdon prediction for the absorption is in error by a factor of ≈2. However, we also account for the additional effect of plasma screening, which predicts a reduction in absorption by a similar amount (up to ≈30%). These two effects compete to determine the overall absorption, which may be increased or decreased, depending on the conditions. The corrections can be incorporated into radiation-hydrodynamics simulation codes by replacing the familiar Coulomb logarithm with an analytic expression which depends on the super-Gaussian order "M" and the screening length.

3.
Nat Commun ; 15(1): 2975, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582938

ABSTRACT

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating.

4.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491565

ABSTRACT

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

5.
Phys Rev E ; 109(2-2): 025203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491694

ABSTRACT

An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.

6.
Phys Rev Lett ; 132(6): 065104, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394572

ABSTRACT

As fusion experiments at the National Ignition Facility (NIF) approach and exceed breakeven, energy from the burning capsule is predicted to couple to the gold walls and reheat the hohlraum. On December 5, 2022, experiment N221204 exceeded target breakeven, historically achieving 3.15 MJ of fusion energy from 2.05 MJ of laser drive; for the first time, energy from the igniting capsule reheated the hohlraum beyond the peak laser-driven radiation temperature of 313 eV to a peak of 350 eV, in less than half a nanosecond. This reheating effect has now been unambiguously observed by the two independent Dante calorimeter systems across multiple experiments, and is shown to result from reheating of the remnant tungsten-doped ablator by the exploding core, which is heated by alpha deposition.

7.
Phys Rev E ; 108(5): L053203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115512

ABSTRACT

Inertial confinement fusion ignition requires high inflight shell velocity, good energy coupling between the hotspot and shell, and high areal density at peak compression. Three-dimensional asymmetries caused by imperfections in the drive symmetry or target can grow and damage the coupling and confinement. Recent high-yield experiments have shown that low-mode asymmetries are a key degradation mechanism and contribute to variability. We show the experimental signatures and impacts of asymmetry change with increasing implosion yield given the same initial cause. This letter has implications for improving robustness to a key degradation in ignition experiments.

8.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625041

ABSTRACT

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

9.
Nature ; 618(7964): 270-275, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225995

ABSTRACT

The gravitational pressure in many astrophysical objects exceeds one gigabar (one billion atmospheres)1-3, creating extreme conditions where the distance between nuclei approaches the size of the K shell. This close proximity modifies these tightly bound states and, above a certain pressure, drives them into a delocalized state4. Both processes substantially affect the equation of state and radiation transport and, therefore, the structure and evolution of these objects. Still, our understanding of this transition is far from satisfactory and experimental data are sparse. Here we report on experiments that create and diagnose matter at pressures exceeding three gigabars at the National Ignition Facility5 where 184 laser beams imploded a beryllium shell. Bright X-ray flashes enable precision radiography and X-ray Thomson scattering that reveal both the macroscopic conditions and the microscopic states. The data show clear signs of quantum-degenerate electrons in states reaching 30 times compression, and a temperature of around two million kelvins. At the most extreme conditions, we observe strongly reduced elastic scattering, which mainly originates from K-shell electrons. We attribute this reduction to the onset of delocalization of the remaining K-shell electron. With this interpretation, the ion charge inferred from the scattering data agrees well with ab initio simulations, but it is significantly higher than widely used analytical models predict6.

10.
Phys Rev Lett ; 130(14): 145103, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084458

ABSTRACT

Inverse bremsstrahlung absorption was measured based on transmission through a finite-length plasma that was thoroughly characterized using spatially resolved Thomson scattering. Expected absorption was then calculated using the diagnosed plasma conditions while varying the absorption model components. To match data, it is necessary to account for (i) the Langdon effect; (ii) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm, as is typical of bremsstrahlung theories but not transport theories; and (iii) a correction due to ion screening. Radiation-hydrodynamic simulations of inertial confinement fusion implosions have to date used a Coulomb logarithm from the transport literature and no screening correction. We anticipate that updating the model for collisional absorption will substantially revise our understanding of laser-target coupling for such implosions.

11.
Rev Sci Instrum ; 94(1): 013104, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725556

ABSTRACT

An x-ray Fresnel diffractive radiography platform was designed for use at the National Ignition Facility. It will enable measurements of micron-scale changes in the density gradients across an interface between isochorically heated warm dense matter materials, the evolution of which is driven primarily through thermal conductivity and mutual diffusion. We use 4.75 keV Ti K-shell x-ray emission to heat a 1000 µm diameter plastic cylinder, with a central 30 µm diameter channel filled with liquid D2, up to 8 eV. This leads to a cylindrical implosion of the liquid D2 column, compressing it to ∼2.3 g/cm3. After pressure equilibration, the location of the D2/plastic interface remains steady for several nanoseconds, which enables us to track density gradient changes across the material interface with high precision. For radiography, we use Cu He-α x rays at 8.3 keV. Using a slit aperture of only 1 µm width increases the spatial coherence of the source, giving rise to significant diffraction features in the radiography signal, in addition to the refraction enhancement, which further increases its sensitivity to density scale length changes at the D2/plastic interface.

12.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797905

ABSTRACT

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

13.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36399755

ABSTRACT

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

14.
Rev Sci Instrum ; 93(9): 093502, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182497

ABSTRACT

Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 µm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30 µm2 and 2 × 40 µm2 geometry, which were milled into 30 µm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 µm source are the slit tilt and taper-where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 µm radius tungsten wire.

15.
Phys Rev E ; 106(2-2): 025202, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109932

ABSTRACT

An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. We describe the experimental improvements that enabled N210808 and present the first experimental measurements from an igniting plasma in the laboratory. Ignition metrics like the product of hot-spot energy and pressure squared, in the absence of self-heating, increased by ∼35%, leading to record values and an enhancement from previous experiments in the hot-spot energy (∼3×), pressure (∼2×), and mass (∼2×). These results are consistent with self-heating dominating other power balance terms. The burn rate increases by an order of magnitude after peak compression, and the hot-spot conditions show clear evidence for burn propagation into the dense fuel surrounding the hot spot. These novel dynamics and thermodynamic properties have never been observed on prior inertial fusion experiments.

16.
Phys Rev E ; 106(2-2): 025201, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36110025

ABSTRACT

We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central "hot spot" of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of α particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a ∼3-6× increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021)1070-664X10.1063/5.0035583, Phys. Plasmas 25, 122704 (2018)1070-664X10.1063/1.5049595]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory "ignition."

18.
Appl Opt ; 61(8): 1987-1993, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35297891

ABSTRACT

Warm dense matter is a region of phase space that is of high interest to multiple scientific communities ranging from astrophysics to inertial confinement fusion. Further understanding of the conditions and properties of this complex state of matter necessitates experimental benchmarking of the current theoretical models. We discuss the development of an x-ray radiography platform designed to measure warm dense matter transport properties at large laser facilities such as the OMEGA Laser Facility. Our platform, Fresnel diffractive radiography, allows for high spatial resolution imaging of isochorically heated targets, resulting in notable diffractive effects at sharp density gradients that are influenced by transport properties such as thermal conductivity. We discuss initial results, highlighting the capabilities of the platform in measuring diffractive features with micrometer-level spatial resolution.

19.
Nature ; 601(7894): 542-548, 2022 01.
Article in English | MEDLINE | ID: mdl-35082418

ABSTRACT

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.

20.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36638294

ABSTRACT

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...