Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 199: 106574, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914172

ABSTRACT

Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.


Subject(s)
Disease Progression , Huntington Disease , Proton Magnetic Resonance Spectroscopy , Huntington Disease/metabolism , Huntington Disease/genetics , Humans , Proton Magnetic Resonance Spectroscopy/methods , Creatine/metabolism , Inositol/metabolism , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Brain/metabolism , Brain/diagnostic imaging
2.
Cerebellum ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438827

ABSTRACT

The influence of brain atrophy on sleep microstructure in Spinocerebellar Ataxias (SCAs) has not been extensively explored limiting the use of these sleep traits as surrogate biomarkers of neurodegeneration and clinical phenotype. The objective of the study is to explore the relationship between sleep microstructure and brain atrophy in SCA2 and its role in the clinical phenotype. Fourteen SCA2 mutation carriers (7 pre-manifest and 7 manifest subjects) underwent polysomnographic, structural MRI, and clinical assessments. Particularly, markers of REM and non-REM sleep microstructure, measures of cerebellar and brainstem atrophy, and clinical scores were analyzed through correlation and mediation analyses. The sleep spindle activity exhibited a negative correlation with the number of trials required to complete the verbal memory test (VMT), and a positive correlation with the cerebellar volume, but the significance of the latter correlation did not survive multiple testing corrections. However, the causal mediation analyses unveiled that sleep spindle activity significantly mediates the association between cerebellar atrophy and VMT performance. Regarding REM sleep, both phasic EMG activity and REM sleep without atonia exhibited significant associations with pontine atrophy and disease severity measures. However, they did not demonstrate a causal mediation effect between the atrophy measures and disease severity. Our study provides evidence about the association of the pontocerebellar atrophy with sleep microstructure in SCA2 offering insights into the cerebellar involvement in cognition via the control of the sleep spindle activity. Therefore, our findings may help to understand the disease pathogenesis and to better characterize sleep microstructure parameters as disease biomarkers.Clinical trial registration number (TRN): No applicable.

3.
Sleep Med ; 117: 184-191, 2024 May.
Article in English | MEDLINE | ID: mdl-38555837

ABSTRACT

BACKGROUND: Isolated rapid-eye-movement behavior disorder (iRBD) often precedes the development of alpha-synucleinopathies such as Parkinson's disease (PD). Magnetic resonance imaging (MRI) studies have revealed structural brain alterations in iRBD partially resembling those observed in PD. However, relatively little is known about whole-brain functional brain alterations in iRBD. Here, we characterize the functional brain connectome of iRBD compared with PD patients and healthy controls (HC) using resting-state functional MRI (rs-fMRI). METHODS: Eighteen iRBD subjects (67.3 ± 6.6 years), 18 subjects with PD (65.4 ± 5.8 years), and 39 age- and sex-matched HC (64.4 ± 9.2 years) underwent rs-fMRI at 3 T. We applied a graph theoretical approach to analyze the brain functional connectome at the global and regional levels. Data were analyzed using both frequentist and Bayesian statistics. RESULTS: Global connectivity was largely preserved in iRBD and PD individuals. In contrast, both disease groups displayed altered local connectivity mainly in the motor network, temporal cortical regions including the limbic system, and the visual system. There were some group specific alterations, and connectivity changes were pronounced in PD individuals. Overall, however, there was a good agreement of the connectome changes observed in both disease groups. CONCLUSIONS: This study provides evidence for widespread functional brain connectivity alterations in iRBD, including motor circuitry, despite normal motor function. Connectome alterations showed substantial resemblance with those observed in PD, underlining a close pathophysiological relationship of iRBD and PD.


Subject(s)
Connectome , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Bayes Theorem , Brain
4.
J Neurol Neurosurg Psychiatry ; 95(7): 682-690, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38383154

ABSTRACT

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.


Subject(s)
Magnetic Resonance Imaging , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/genetics , Male , Female , Middle Aged , Adult , Genotype , Aged , Spinal Cord/pathology , Spinal Cord/diagnostic imaging , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Severity of Illness Index , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL