Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Commun Chem ; 7(1): 60, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514757

Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids. S-EVs were obtained from cancer cell lines known to express, at a different level, the αvß6 integrin receptor, a well-established hallmark of numerous epithelial cancer types. The resulting biosensor turned out to recognize αvß6-containing S-EVs down to a limit of 0.7*103 S-EVs/mL with a linear range up to 105 S-EVs /mL, and a relative standard deviation of 11%, thus it may represent a novel opportunity for αvß6 expressing cancers detection.

2.
J Med Chem ; 67(3): 1812-1824, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38285632

Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.


Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Humans , Fluorouracil/pharmacology , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Peptides/pharmacology , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Cell Cycle Proteins/metabolism
3.
Arch Pharm (Weinheim) ; 357(3): e2300583, 2024 Mar.
Article En | MEDLINE | ID: mdl-38110703

Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.


Biphenyl Compounds , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Ligands , Structure-Activity Relationship , Benzimidazoles/pharmacology , Water
4.
J Chem Inf Model ; 63(20): 6302-6315, 2023 10 23.
Article En | MEDLINE | ID: mdl-37788340

Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvß3 and αvß5 but also the αvß6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.


Integrins , Oligopeptides , Cell Line, Tumor , Oligopeptides/chemistry , Peptides/chemistry , Pancreatic Neoplasms
5.
Chemistry ; 29(60): e202301852, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37505481

The recent disclosure of the ability of aromatic isocyanides to harvest visible light and act as single electron acceptors when reacting with tertiary aromatic amines has triggered a renewed interest in their application to the development of green photoredox catalytic methodologies. Accordingly, the present work explores their ability to promote the generation of both alkyl and acyl radicals starting from radical precursors such as Hantzsch esters, potassium alkyltrifluoroborates, and α-oxoacids. Mechanistic studies involving UV-visible absorption and fluorescence experiments, electrochemical measurements of the ground-state redox potentials along with computational calculations of both the ground- and the excited-state redox potentials of a set of nine different aromatic isocyanides provide key insights to promote a rationale design of a new generation of isocyanide-based organic photoredox catalysts. Importantly, the green potential of the investigated chemistry is demonstrated by a direct and easy access to deuterium labeled compounds.

6.
Comput Struct Biotechnol J ; 21: 3355-3368, 2023.
Article En | MEDLINE | ID: mdl-37384351

Today it is widely recognized that the PD-1/PD-L1 axis plays a fundamental role in escaping the immune system in cancers, so that anti-PD-1/PD-L1 antibodies have been evaluated for their antitumor properties in more than 1000 clinical trials. As a result, some of them have entered the market revolutionizing the treatment landscape of specific cancer types. Nonetheless, a new era based on the development of small molecules as anti PD-L1 drugs has begun. There are, however, some limitations to advancing these compounds into clinical stages including the possible difficulty in counteracting the PD-1/PD-L1 interaction in vivo, the discrepancy between the in vitro IC50 (HTFR assay) and cellular EC50 (immune checkpoint blockade co-culture assay), and the differences in ligands' affinity between human and murine PD-L1, which can affect their preclinical evaluation. Here, an extensive theoretical study, assisted by MicroScale Thermophoresis binding assays and NMR experiments, was performed to provide an atomistic picture of the binding event of three representative biphenyl-based compounds in both human and murine PD-L1. Structural determinants of the species' specificity were unraveled, providing unprecedented details useful for the design of next generation anti-PD-L1 molecules.

7.
Nanoscale ; 15(20): 8988-8995, 2023 May 25.
Article En | MEDLINE | ID: mdl-37144495

The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.


Lipopolysaccharides , Liposomes , Lipopolysaccharides/chemistry , Lipid A , Scattering, Small Angle , X-Ray Diffraction , Bacteria , Glycolipids
8.
Dis Model Mech ; 16(3)2023 03 01.
Article En | MEDLINE | ID: mdl-36912171

Lipopolysaccharide (LPS) exposure to macrophages induces an inflammatory response, which is regulated at the transcriptional and post-transcriptional levels. HuR (ELAVL1) is an RNA-binding protein that regulates cytokines and chemokines transcripts containing AU/U-rich elements (AREs) and mediates the LPS-induced response. Here, we show that small-molecule tanshinone mimics (TMs) inhibiting HuR-RNA interaction counteract LPS stimulus in macrophages. TMs exist in solution in keto-enolic tautomerism, and molecular dynamic calculations showed the ortho-quinone form inhibiting binding of HuR to mRNA targets. TM activity was lost in vitro by blocking the diphenolic reduced form as a diacetate, but resulted in prodrug-like activity in vivo. RNA and ribonucleoprotein immunoprecipitation sequencing revealed that LPS induces a strong coupling between differentially expressed genes and HuR-bound genes, and TMs reduced such interactions. TMs decreased the association of HuR with genes involved in chemotaxis and immune response, including Cxcl10, Il1b and Cd40, reducing their expression and protein secretion in primary murine bone marrow-derived macrophages and in an LPS-induced peritonitis model. Overall, TMs show anti-inflammatory properties in vivo and suggest HuR as a potential therapeutic target for inflammation-related diseases.


ELAV-Like Protein 1 , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Macrophages/metabolism , RNA/metabolism , RNA, Messenger/genetics
9.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article En | MEDLINE | ID: mdl-36555282

Fluorescent Proteins are widely studied for their multiple applications in technological and biotechnological fields. Despite this, they continue to represent a challenge in terms of a complete understanding of all the non-equilibrium photo-induced processes that rule their properties. In this context, a theoretical-computational approach can support experimental results in unveiling and understanding the processes taking place after electronic excitation. A non-standard cyan fluorescent protein, psamFP488, is characterized by an absorption maximum that is blue-shifted in comparison to other cyan fluorescent proteins. This protein is characterized by an extended Stokes shift and an ultrafast (170 fs) excited state proton transfer. In this work, a theoretical-computational study, including excited state ab initio dynamics, is performed to help understanding the reaction mechanism and propose new hypotheses on the role of the residues surrounding the chromophore. Our results suggest that the proton transfer could be indirect toward the acceptor (Glu167) and involves other residues surrounding the chromophore, despite the ultrafast kinetics.


Protons , Green Fluorescent Proteins/metabolism
10.
Molecules ; 26(24)2021 Dec 11.
Article En | MEDLINE | ID: mdl-34946600

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Anilides , Benzamides , Enzyme Inhibitors , Microfilament Proteins , Oxidoreductases , Small Molecule Libraries , Humans , Anilides/chemistry , Anilides/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microfilament Proteins/antagonists & inhibitors , Microfilament Proteins/metabolism , Molecular Structure , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
11.
J Med Chem ; 64(21): 16020-16045, 2021 11 11.
Article En | MEDLINE | ID: mdl-34670084

The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.


B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/immunology , Neoplasms/pathology , Small Molecule Libraries/pharmacology , Triazines/pharmacology , Calorimetry, Differential Scanning , Cell Line, Tumor , Coculture Techniques , Humans , Immune Checkpoint Inhibitors/chemistry , Models, Molecular , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Triazines/chemistry
12.
J Phys Chem B ; 125(36): 10273-10281, 2021 09 16.
Article En | MEDLINE | ID: mdl-34472354

The excited state proton transfer (ESPT) reaction from the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS or pyranine) to an acetate molecule has been investigated in explicit aqueous solution via excited state ab initio molecular dynamics simulations based on hybrid quantum/molecular mechanics (QM/MM) potentials. In all the trajectories, the direct proton transfer has been observed in the excited state within 1 ps. We find that the initial structural configuration extracted from the ground state distribution strongly affects the ESPT kinetics. Indeed, the relative orientation of the proton donor-acceptor pair and the presence of a water molecule hydrogen bonded to the phenolic acid group of the pyranine are the key factors to facilitate the ESPT. Furthermore, we analyze the vibrational fingerprints of the ESPT reaction, reproducing the blue shift of the acetate CO stretching (COac), from 1666 to 1763 cm-1 testifying the transformation of acetate to acetic acid. Finally, our findings suggest that the acetate CC stretching (CCac) is also sensitive to the progress of the ESPT reaction. The CCac stretching is indeed ruled by the two vibrational modes (928 and 1426 cm-1), that in the excited state are alternately activated when the proton is shared or bound to the donor/acceptor, respectively.


Arylsulfonates , Protons , Acetates , Water
13.
J Phys Chem A ; 125(17): 3569-3578, 2021 May 06.
Article En | MEDLINE | ID: mdl-33900071

In this work, we simulate the excited state proton transfer (ESPT) reaction involving the pyranine photoacid and an acetate molecule as proton acceptor, connected by a bridge water molecule. We employ ab initio molecular dynamics combined with an hybrid quantum/molecular mechanics (QM/MM) framework. Furthermore, a time-resolved vibrational analysis based on the wavelet-transform allows one to identify two low frequency vibrational modes that are fingerprints of the ESPT event: a ring wagging and ring breathing. Their composition suggests their key role in optimizing the structure of the proton donor-acceptor couple and promoting the ESPT event. We find that the choice of the QM/MM partition dramatically affects the photoinduced reactivity of the system. The QM subspace was gradually extended including the water molecules directly interacting with the pyranine-water-acetate system. Indeed, the ESPT reaction takes place when the hydrogen bond network around the reactive system is taken into account at full QM level.

14.
J Chem Theory Comput ; 17(3): 1755-1770, 2021 Mar 09.
Article En | MEDLINE | ID: mdl-33577311

In the present study, we propose, validate, and give first applications for large-scale systems of coarse-grained models suitable for filler/polymer interfaces based on carbon black (CB) and polyethylene (PE). The computational efficiency of the proposed approach, based on hybrid particle-field models (hPF), allows large-scale simulations of CB primary particles of realistic size (∼20 nm) embedded in PE melts. The molecular detailed models, here introduced, allow a microscopic description of the bound layer, through the analysis of the conformational behavior of PE chains adsorbed on different surface sites of CB primary particles, where the conformational behavior of adsorbed chains is different from models based on flat infinite surfaces. On the basis of the features of the systems, an optimized version of OCCAM code for large-scale (up to more than 8 million of beads) parallel runs is proposed and benchmarked. The computational efficiency of the proposed approach opens the possibility of a computational screening of the bound layer, involving the optimal combination of surface chemistry, size, and shape of CB aggregates and the molecular weight distribution of the polymers achieving an important tool to address the polymer/fillers interface and interphase engineering in the polymer industry.

15.
Front Mol Biosci ; 7: 569990, 2020.
Article En | MEDLINE | ID: mdl-33195416

The Green Fluorescent Protein (GFP) is a widely studied chemical system both for its large amount of applications and the complexity of the excited state proton transfer responsible of the change in the protonation state of the chromophore. A detailed investigation on the structure of the chromophore environment and the influence of chromophore form (either neutral or anionic) on it is of crucial importance to understand how these factors could potentially influence the protein function. In this study, we perform a detailed computational investigation based on the analysis of ab-initio molecular dynamics simulations, to disentangle the main structural quantities determining the fine balance in the chromophore environment. We found that specific hydrogen bonds interactions directly involving the chromophore (or not), are correlated to quantities, such as the volume of the cavity in which the chromophore is embedded and that it is importantly affected by the chromophore protonation state. The cross-correlation analysis performed on some of these hydrogen bonds and the cavity volume, demonstrates a direct correlation among them and we also identified the ones specifically involved in this correlation. We also found that specific interactions among residues far in the space are correlated, demonstrating the complexity of the chromophore environment and that many structural quantities have to be taken into account to properly describe and understand the main factors tuning the active site of the protein. From an overall evaluation of the results obtained in this work, it is shown that the residues which a priori are perceived to be spectators play instead an important role in both influencing the chromophore environment (cavity volume) and its dynamics (cross-correlations among spatially distant residues).

16.
Phys Chem Chem Phys ; 22(39): 22645-22661, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-33015693

Vibrational analysis in solution and the theoretical determination of infrared and Raman spectra are of key importance in many fields of chemical interest. Vibrational band dynamics of molecules and their sensitivity to the environment can also be captured by these spectroscopies in their time dependent version. However, it is often difficult to provide an interpretation of the experimental data at the molecular scale, such as molecular mechanisms or the processes hidden behind them. In this work, we present a theoretical-computational protocol based on ab initio molecular dynamics simulations and a combination of normal-like (generalized) mode analysis of solute-solvent clusters with a wavelet transform, for the first time. The case study is the vibrational dynamics of N-methyl-acetamide (NMA) in water solution, a well-known model of hydration of peptides and proteins. Amide modes are typical bands of peptide and protein backbone, and their couplings with the environment are very challenging in terms of the accurate prediction of solvent induced intensity and frequency shifts. The contribution of water molecules surrounding NMA to the composition of generalized and time resolved modes is introduced in our vibrational analysis, showing unequivocally its influence on the amide mode spectra. It is also shown that such mode compositions need the inclusion of the first shell solvent molecules to be accurately described. The wavelet analysis is proven to be strongly recommended to follow the time evolution of the spectra, and to capture vibrational band couplings and frequency shifts over time, preserving at the same time a well-balanced time-frequency resolution. This peculiar feature also allows one to perform a combined structural-vibrational analysis, where the different strengths of hydrogen bond interactions can quantitatively affect the amide bands over time at finite temperature. The proposed method allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, in this case the peptide backbone, and its hydration layouts.

17.
J Chem Theory Comput ; 16(10): 6007-6013, 2020 Oct 13.
Article En | MEDLINE | ID: mdl-32955870

We present a novel time-resolved vibrational analysis for studying photoinduced nuclear relaxation. Generalized modes velocities are defined from ab initio molecular dynamics and wavelet transformed, providing the time localization of vibrational signals in the electronic excited state. The photoexcited pyranine in aqueous solution is presented as a case study. The transient and sequential activation of the simulated vibrational signals is in good agreement with vibrational dynamics obtained from femtosecond stimulated Raman spectroscopy data.

18.
J Comput Chem ; 41(26): 2228-2239, 2020 10 05.
Article En | MEDLINE | ID: mdl-32770577

Solute-solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical-physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute-solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.


Methanol/chemistry , Models, Chemical , Molecular Dynamics Simulation , Solvents/chemistry , Water/chemistry , Green Fluorescent Proteins/chemistry , Solubility
19.
Nanoscale Adv ; 2(8): 3164-3180, 2020 Aug 11.
Article En | MEDLINE | ID: mdl-36134283

A theoretical-computational protocol to model the Joule heating process in nanocomposite materials is presented. The proposed modeling strategy is based on post processing of trajectories obtained from large scale molecular simulations. This protocol, based on molecular models, is the first one to be applied to organic nanocomposites based on carbon nanotubes (CNT). This strategy allows to keep a microscopic explicit picture of the systems, to directly catch the molecular structure underlying the process under study and, at the same time, to include macroscopic boundary conditions fixed in the experiments. As validation and first application of the proposed strategy, a detailed investigation on CNT based organic composites is reported. The effect of CNT morphologies, concentration and working conditions on Joule heating has been modelled and compared with available experiments. Further experiments are performed also in this work to increase the number of comparisons especially in specific voltage ranges where available references from literature were missing. Simulations are in both qualitative and quantitative agreement with several experiments and trends reported in the recent literature, as well as with experiments performed in this work. The proposed approach combined with large scale hybrid particle-field molecular simulations can give insights and opens to way to a rational design of self-heating nanocomposites.

20.
J Chem Theory Comput ; 15(1): 43-51, 2019 Jan 08.
Article En | MEDLINE | ID: mdl-30512961

Hybrid quantum mechanical/molecular mechanical (QM/MM) models are some of the most powerful and computationally feasible approaches to account for solvent effects or more general environmental perturbations on quantum chemical systems. In their more recent formulations (known as polarizable embedding) they can account for electrostatic and mutual polarization effects between the QM and the MM subsystems. In this paper, a polarizable embedding scheme based on induced dipoles that is able both to describe electron evolution of the embedded QM system in an efficient manner as well as to capture the frequency dependent behavior of the solvent is proposed, namely, ωMMPol. The effects of this frequency-dependent solvent on a time-dependent model system-the Rabi oscillations of H2+ in a resonant field-are considered. The solvent is shown to introduce only mild perturbations when the excitation frequencies of the solvent and the solute are off-resonant. However, the dynamics of the H2+ are fundamentally changed in the presence of a near-resonant excitation solvent. The effectiveness of ωMMPol to simulating realistic chemical systems is demonstrated by capturing charge transfer dynamics within a solvated system.

...