Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5160, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620311

ABSTRACT

The relationship between microbiota, short chain fatty acids (SCFAs), and obesity remains enigmatic. We employ amplicon sequencing and targeted metabolomics in a large (n = 1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs are greatest in Ghanaians, and lowest in Americans, representing each end of the urbanization spectrum. Obesity is significantly associated with a reduction in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria, with country of origin being the strongest explanatory factor. Diabetes, glucose state, hypertension, obesity, and sex can be accurately predicted from the global microbiota, but when analyzed at the level of country, predictive accuracy is only universally maintained for sex. Diabetes, glucose, and hypertension are only predictive in certain low-income countries. Our findings suggest that adiposity-related microbiota differences differ between low-to-middle-income compared to high-income countries. Further investigation is needed to determine the factors driving this association.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Adiposity , Ghana/epidemiology , Obesity/epidemiology , Fatty Acids, Volatile , Glucose
2.
Res Sq ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090540

ABSTRACT

The relationship between gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity is still not well understood. Here we investigated these associations in a large (n=1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Fecal microbiota diversity and SCFA concentration were greatest in Ghanaians, and lowest in the US population, representing the lowest and highest end of the epidemiologic transition spectrum, respectively. Obesity was significantly associated with a reduction in SCFA concentration, microbial diversity and SCFA synthesizing bacteria. Country of origin could be accurately predicted from the fecal microbiota (AUC=0.97), while the predictive accuracy for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC = 0.57). The findings suggest that the microbiota differences between obesity and non-obesity may be larger in low-to-middle-income countries compared to high-income countries. Further investigation is needed to determine the factors driving this association..

3.
bioRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993742

ABSTRACT

The relationship between the gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity remains unclear due to conflicting reports from studies with limited statistical power. Additionally, this association has rarely been explored in large scale diverse populations. Here, we investigated associations between fecal microbial composition, predicted metabolic potential, SCFA concentrations, and obesity in a large ( N = 1,934) adult cohort of African-origin spanning the epidemiologic transition, from Ghana, South Africa, Jamaica, Seychelles, and the United States (US). The greatest gut microbiota diversity and total fecal SCFA concentration was found in the Ghanaian population, while the lowest levels were found in the US population, respectively representing the lowest and the highest end of the epidemiologic transition spectrum. Country-specific bacterial taxa and predicted-functional pathways were observed, including an increased prevalence of Prevotella , Butyrivibrio , Weisella and Romboutsia in Ghana and South Africa, while Bacteroides and Parabacteroides were enriched in Jamaican and the US populations. Importantly, 'VANISH' taxa, including Butyricicoccus and Succinivibrio , were significantly enriched in the Ghanaian cohort, reflecting the participants' traditional lifestyles. Obesity was significantly associated with lower SCFA concentrations, a decrease in microbial richness, and dissimilarities in community composition, and reduction in the proportion of SCFA synthesizing bacteria including Oscillospira , Christensenella , Eubacterium , Alistipes , Clostridium and Odoribacter . Further, the predicted proportions of genes in the lipopolysaccharide (LPS) synthesis pathway were enriched in obese individuals, while genes associated with butyrate synthesis via the dominant pyruvate pathway were significantly reduced in obese individuals. Using machine learning, we identified features predictive of metabolic state and country of origin. Country of origin could accurately be predicted by the fecal microbiota (AUC = 0.97), whereas obesity could not be predicted as accurately (AUC = 0.65). Participant sex (AUC = 0.75), diabetes status (AUC = 0.63), hypertensive status (AUC = 0.65), and glucose status (AUC = 0.66) could all be predicted with different success. Interestingly, within country, the predictive accuracy of the microbiota for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC = 0.57). Collectively, our findings reveal profound variation in the gut microbiota, inferred functional pathways, and SCFA synthesis as a function of country of origin. While obesity could be predicted accurately from the microbiota, the variation in accuracy in parallel with the epidemiological transition suggests that differences in the microbiota between obesity and non-obesity may be larger in low-to-middle countries compared to high-income countries. Further examination of independent study populations using multi-omic approaches will be necessary to determine the factors that drive this association.

4.
Microbiome ; 9(1): 132, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103074

ABSTRACT

BACKGROUND: SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. METHODS: We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. CONCLUSIONS: These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment. Video Abstract.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Viral/genetics
5.
Proc Natl Acad Sci U S A ; 117(52): 33540-33548, 2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33323487

ABSTRACT

Bacteria deploy rearrangement hotspot (Rhs) proteins as toxic effectors against both prokaryotic and eukaryotic target cells. Rhs proteins are characterized by YD-peptide repeats, which fold into a large ß-cage structure that encapsulates the C-terminal toxin domain. Here, we show that Rhs effectors are essential for type VI secretion system (T6SS) activity in Enterobacter cloacae (ECL). ECL rhs- mutants do not kill Escherichia coli target bacteria and are defective for T6SS-dependent export of hemolysin-coregulated protein (Hcp). The RhsA and RhsB effectors of ECL both contain Pro-Ala-Ala-Arg (PAAR) repeat domains, which bind the ß-spike of trimeric valine-glycine repeat protein G (VgrG) and are important for T6SS activity in other bacteria. Truncated RhsA that retains the PAAR domain is capable of forming higher-order, thermostable complexes with VgrG, yet these assemblies fail to restore secretion activity to ∆rhsA ∆rhsB mutants. Full T6SS-1 activity requires Rhs that contains N-terminal transmembrane helices, the PAAR domain, and an intact ß-cage. Although ∆rhsA ∆rhsB mutants do not kill target bacteria, time-lapse microscopy reveals that they assemble and fire T6SS contractile sheaths at ∼6% of the frequency of rhs+ cells. Therefore, Rhs proteins are not strictly required for T6SS assembly, although they greatly increase secretion efficiency. We propose that PAAR and the ß-cage provide distinct structures that promote secretion. PAAR is clearly sufficient to stabilize trimeric VgrG, but efficient assembly of T6SS-1 also depends on an intact ß-cage. Together, these domains enforce a quality control checkpoint to ensure that VgrG is loaded with toxic cargo before assembling the secretion apparatus.

6.
medRxiv ; 2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33236030

ABSTRACT

Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized ICU patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset in a meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome throughout their stay, SARS-CoV-2 was less frequently detected there (11%). Despite surface contamination in almost all patient rooms, no health care workers providing COVID-19 patient care contracted the disease. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types, and had higher prevalence in positive surface and human samples, even when comparing to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities contribute to viral prevalence both in the host and hospital environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...