Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Acta Neuropathol Commun ; 9(1): 155, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535181

ABSTRACT

The ryanodine receptor RyR1 is the main sarcoplasmic reticulum Ca2+ channel in skeletal muscle and acts as a connecting link between electrical stimulation and Ca2+-dependent muscle contraction. Abnormal RyR1 activity compromises normal muscle function and results in various human disorders including malignant hyperthermia, central core disease, and centronuclear myopathy. However, RYR1 is one of the largest genes of the human genome and accumulates numerous missense variants of uncertain significance (VUS), precluding an efficient molecular diagnosis for many patients and families. Here we describe a recurrent RYR1 mutation previously classified as VUS, and we provide clinical, histological, and genetic data supporting its pathogenicity. The heterozygous c.12083C>T (p.Ser4028Leu) mutation was found in thirteen patients from nine unrelated congenital myopathy families with consistent clinical presentation, and either segregated with the disease in the dominant families or occurred de novo. The affected individuals essentially manifested neonatal or infancy-onset hypotonia, delayed motor milestones, and a benign disease course differing from classical RYR1-related muscle disorders. Muscle biopsies showed unspecific histological and ultrastructural findings, while RYR1-typical cores and internal nuclei were seen only in single patients. In conclusion, our data evidence the causality of the RYR1 c.12083C>T (p.Ser4028Leu) mutation in the development of an atypical congenital myopathy with gradually improving motor function over the first decades of life, and may direct molecular diagnosis for patients with comparable clinical presentation and unspecific histopathological features on the muscle biopsy.


Subject(s)
Disease Progression , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Adolescent , Adult , Age of Onset , Aged , Child, Preschool , Female , Humans , Male , Middle Aged , Pedigree , Young Adult
2.
J Neurol ; 268(9): 3337-3343, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33666721

ABSTRACT

OBJECTIVE: Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited multisystem ataxia compromising cerebellar, vestibular, and sensory nerves, which has been associated to a pathogenic AAGGG(n) biallelic expansion repeat in the RFC1 gene. Our objective was to assess its prevalence in a French cohort of patients with idiopathic sporadic late-onset ataxia (ILOA), idiopathic early-onset ataxia (IEOA), or Multiple System Atrophy of Cerebellar type (MSA-C). METHODS: 163 patients were recruited in 3 French tertiary centers: 100 ILOA, 21 IEOA, and 42 patients with possible or probable MSA-C. RESULTS: A pathogenic biallelic RFC1 AAGGG(n) repeat expansion was found in 15 patients: 15/100 in the ILOA group, but none in the IEOA and MSA-C subgroups. 14/15 patients had a CANVAS phenotype. Only 1/15 had isolated cerebellar ataxia, but also shorter biallelic expansions. Two RFC1 AAGGG(n) alleles were found in 78% of patients with a CANVAS phenotype. In one post-mortem case, the pathophysiological involvement of cerebellum and medullar posterior columns was found. CONCLUSION: Our study confirms the genetic heterogeneity of the CANVAS and that RFC1 repeat expansions should be searched for preferentially in case of unexplained ILOA associated with a sensory neuronopathy, but not particularly in patients classified as MSA-C.


Subject(s)
Cerebellar Ataxia , Replication Protein C/genetics , Spinocerebellar Degenerations , Ataxia , Cerebellar Ataxia/genetics , Cohort Studies , Humans , Spinocerebellar Degenerations/genetics
3.
J Neuromuscul Dis ; 4(4): 349-355, 2017.
Article in English | MEDLINE | ID: mdl-29103045

ABSTRACT

Autosomal dominant centronuclear myopathy (CNM) caused by mutations in the gene coding for amphiphysin-2 (BIN1) typically presents in adulthood with progressive muscle weakness. We report a Dutch family with AD CNM due to a novel BIN1 mutation (c.53T>A (p.Val18Glu)), strongly impairing the membrane tubulation activity of amphiphysin-2. The main features were mild proximal weakness with pronounced myalgia, exercise intolerance and large muscle mass, with a childhood onset in the youngest generation and mild cognitive features. This suggests BIN1 mutations should be considered in patients with isolated exercise intolerance and myalgia, even in childhood.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Mutation , Myopathies, Structural, Congenital/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Age of Onset , Aged , Child , Family , Female , Genes, Dominant , Humans , Male , Middle Aged , Myopathies, Structural, Congenital/epidemiology , Myopathies, Structural, Congenital/pathology , Phenotype
4.
Acta Neuropathol ; 134(6): 889-904, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28685322

ABSTRACT

X-linked myotubular myopathy (XLMTM), a severe congenital myopathy, is caused by mutations in the MTM1 gene located on the X chromosome. A majority of affected males die in the early postnatal period, whereas female carriers are believed to be usually asymptomatic. Nevertheless, several affected females have been reported. To assess the phenotypic and pathological spectra of carrier females and to delineate diagnostic clues, we characterized 17 new unrelated affected females and performed a detailed comparison with previously reported cases at the clinical, muscle imaging, histological, ultrastructural and molecular levels. Taken together, the analysis of this large cohort of 43 cases highlights a wide spectrum of clinical severity ranging from severe neonatal and generalized weakness, similar to XLMTM male, to milder adult forms. Several females show a decline in respiratory function. Asymmetric weakness is a noteworthy frequent specific feature potentially correlated to an increased prevalence of highly skewed X inactivation. Asymmetry of growth was also noted. Other diagnostic clues include facial weakness, ptosis and ophthalmoplegia, skeletal and joint abnormalities, and histopathological signs that are hallmarks of centronuclear myopathy such as centralized nuclei and necklace fibers. The histopathological findings also demonstrate a general disorganization of muscle structure in addition to these specific hallmarks. Thus, MTM1 mutations in carrier females define a specific myopathy, which may be independent of the presence of an XLMTM male in the family. As several of the reported affected females carry large heterozygous MTM1 deletions not detectable by Sanger sequencing, and as milder phenotypes present as adult-onset limb-girdle myopathy, the prevalence of this myopathy is likely to be greatly underestimated. This report should aid diagnosis and thus the clinical management and genetic counseling of MTM1 carrier females. Furthermore, the clinical and pathological history of this cohort may be useful for therapeutic projects in males with XLMTM, as it illustrates the spectrum of possible evolution of the disease in patients surviving long term.


Subject(s)
Heterozygote , Mutation , Myopathies, Structural, Congenital/diagnosis , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Diagnosis, Differential , Female , Humans , Middle Aged , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Myopathies, Structural, Congenital/physiopathology , Phenotype , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Severity of Illness Index
6.
Acta Neuropathol ; 133(4): 517-533, 2017 04.
Article in English | MEDLINE | ID: mdl-28012042

ABSTRACT

Muscle contraction upon nerve stimulation relies on excitation-contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR.


Subject(s)
Calcium Channels/genetics , Calcium Channels/metabolism , Myotonia Congenita/genetics , Myotonia Congenita/metabolism , Adolescent , Adult , Calcium/metabolism , Calcium Channels, L-Type , Cells, Cultured , Child , Cohort Studies , Family , Female , Humans , Male , Middle Aged , Muscle Cells/metabolism , Muscle Cells/pathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation , Myotonia Congenita/diagnostic imaging , Myotonia Congenita/pathology , Phenotype , Sequence Homology, Amino Acid , Young Adult
7.
Brain ; 137(Pt 12): 3160-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25260562

ABSTRACT

Centronuclear myopathies are congenital muscle disorders characterized by type I myofibre predominance and an increased number of muscle fibres with nuclear centralization. The severe neonatal X-linked form is due to mutations in MTM1, autosomal recessive centronuclear myopathy with neonatal or childhood onset results from mutations in BIN1 (amphiphysin 2), and dominant cases were previously associated to mutations in DNM2 (dynamin 2). Our aim was to determine the genetic basis and physiopathology of patients with mild dominant centronuclear myopathy without mutations in DNM2. We hence established and characterized a homogeneous cohort of nine patients from five families with a progressive adult-onset centronuclear myopathy without facial weakness, including three sporadic cases and two families with dominant disease inheritance. All patients had similar histological and ultrastructural features involving type I fibre predominance and hypotrophy, as well as prominent nuclear centralization and clustering. We identified heterozygous BIN1 mutations in all patients and the molecular diagnosis was complemented by functional analyses. Two mutations in the N-terminal amphipathic helix strongly decreased the membrane-deforming properties of amphiphysin 2 and three stop-loss mutations resulted in a stable protein containing 52 supernumerary amino acids. Immunolabelling experiments revealed abnormal central accumulation of dynamin 2, caveolin-3, and the autophagic marker p62, and general membrane alterations of the triad, the sarcolemma, and the basal lamina as potential pathological mechanisms. In conclusion, we identified BIN1 as the second gene for dominant centronuclear myopathy. Our data provide the evidence that specific BIN1 mutations can cause either recessive or dominant centronuclear myopathy and that both disorders involve different pathomechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Adult , Age of Onset , Dynamin II/genetics , Female , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism
8.
Hum Mutat ; 33(6): 949-59, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22396310

ABSTRACT

Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.


Subject(s)
Dynamin II/genetics , Genes, Dominant , Genetic Association Studies , Mutation , Myopathies, Structural, Congenital/genetics , Amino Acid Sequence , Dynamin II/chemistry , Humans , Molecular Sequence Data , Myopathies, Structural, Congenital/diagnosis , Polymorphism, Genetic , Sequence Alignment
9.
Neuromuscul Disord ; 20(6): 375-81, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20434914

ABSTRACT

X-linked centronuclear myopathy (XLMTM), also called myotubular myopathy, is a severe congenital myopathy characterized by generalized hypotonia and weakness at birth and the typical histological finding of centralization of myo-nuclei. It is caused by mutations in the MTM1 gene encoding the 3-phosphoinositides phosphatase myotubularin. Mutations in dynamin 2 and amphiphysin 2 genes lead to autosomal forms of centronuclear myopathy (CNM). While XLMTM is the most frequent and severe form of CNM, no mutations are found in about 30% of patients by sequencing all MTM1 exons. Moreover, the impact of MTM1 sequence variants is sometimes difficult to assess. It is thus important to devise a complete molecular diagnostic strategy that includes analysis of the myotubularin transcript and protein expression. We therefore developed novel antibodies against human myotubularin and showed that they are able to detect the endogenous protein by direct Western blot from muscle samples and from cultured cells. In conjunction with RT-PCR analysis we validated the consequences of missense and splice mutations on transcript integrity and protein level. We also detected and characterized a novel deep intronic mutation consisting of a single nucleotide change that induces exonisation of a conserved intronic sequence. Patients with centronuclear myopathy and no molecular diagnosis should be investigated for MTM1 defects at the cDNA and protein level.


Subject(s)
Genes, X-Linked/genetics , Introns/genetics , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Base Sequence , Blotting, Western , Cells, Cultured , DNA/genetics , Exons/genetics , Humans , Molecular Sequence Data , Mutation/genetics , Mutation/physiology , Protein Tyrosine Phosphatases, Non-Receptor/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
10.
Neuromuscul Disord ; 17(11-12): 955-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17825552

ABSTRACT

Mutations in dynamin 2 (DNM2), an ubiquitously-expressed large GTPase, cause autosomal dominant centronuclear myopathy (DNM2-CNM) and AD Charcot-Marie-Tooth disease type 2B (DNM2-CMT2B). We report a series of 5 patients from the same family who all presented with dominant centronuclear myopathy, mild cognitive impairment, mild axonal peripheral nerve involvement, and the novel E368Q mutation in the DNM2 gene. This study suggests that the phenotypes of dynamin 2 related centronuclear myopathy and Charcot-Marie-Tooth disease overlap and that DNM2 mutations may alter cerebral function. This report extends the clinical knowledge of DNM2-centronuclear myopathy and shows that the role of DNM2 mutations in the central nervous system should be further studied.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Dynamin II/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Adolescent , Adult , Axons/metabolism , Axons/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/physiopathology , Cognition Disorders/genetics , Cognition Disorders/metabolism , Cognition Disorders/physiopathology , Comorbidity , DNA Mutational Analysis , Female , Genetic Markers/genetics , Genetic Testing , Genotype , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Myopathies, Structural, Congenital/metabolism , Myopathies, Structural, Congenital/physiopathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/physiopathology
11.
Hum Mol Genet ; 15(21): 3098-106, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17008356

ABSTRACT

In eukaryotic cells, phosphoinositides are lipid second messengers important for many cellular processes and have been found dysregulated in several human diseases. X-linked myotubular (centronuclear) myopathy is a severe congenital myopathy caused by mutations in a phosphatidylinositol 3-phosphate (PtdIns3P) phosphatase called myotubularin, and mutations in dominant centronuclear myopathy (CNM) cases were identified in the dynamin 2 gene. The genes mutated in autosomal recessive cases of CNMs have not been found. We have identified a novel phosphoinositide phosphatase (hJUMPY) conserved through evolution, which dephosphorylates the same substrates as myotubularin, PtdIns3P and PtdIns(3,5)P(2), in vitro and ex vivo. We found, in sporadic cases of CNMs, two missense variants that affect the enzymatic function. One of these appeared de novo in a patient also carrying a de novo mutation in the dynamin 2 gene. The other missense (R336Q) found in another patient changes the catalytic arginine residue of the core phosphatase signature present in protein tyrosine/dual-specificity phosphatases and in phosphoinositide phosphatases and drastically reduces the enzymatic activity both in vitro and in transfected cells. The inheritance of the phenotype with regard to this variant is still unclear and could be either recessive with an undetected second allele or digenic. We propose that impairment of hJUMPY function is implicated in some cases of autosomal CNM and that hJUMPY cooperates with myotubularin to regulate the level of phosphoinositides in skeletal muscle.


Subject(s)
Mutation, Missense , Myopathies, Structural, Congenital/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Amino Acid Sequence , Animals , Arginine , COS Cells , Catalytic Domain , Cell Line , Chlorocebus aethiops , Chromosomes, Human, Pair 3 , Female , Genetic Variation , Humans , Male , Molecular Sequence Data , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Pedigree , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/chemistry , Protein Structure, Tertiary , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor , Sequence Alignment , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...