Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Nature ; 630(8016): 484-492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811729

ABSTRACT

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Bacteria/virology , Bacteria/genetics , Bacteria/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Chryseobacterium/genetics , Chryseobacterium/immunology , Chryseobacterium/virology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , DNA Cleavage , Genetic Loci/genetics , Models, Molecular , Protein Domains
2.
J Lipid Res ; 65(6): 100553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704027

ABSTRACT

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.


Subject(s)
Caenorhabditis elegans , Isoenzymes , Sphingolipids , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Sphingolipids/biosynthesis , Sphingolipids/metabolism , Isoenzymes/metabolism , Isoenzymes/genetics , Tandem Mass Spectrometry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Ceramides/metabolism , Ceramides/biosynthesis , RNA Interference , Chromatography, Liquid
3.
Oncogene ; 43(23): 1769-1778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38632437

ABSTRACT

Pyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333. Ser333 phosphorylation antagonizes PKM2 O-GlcNAcylation, promotes its tetramer formation and enzymatic activity, and decreases its nuclear localization. As PKM2 is known to have a nuclear role in regulating c-Myc, we also show that PKM2-S333 phosphorylation inhibits c-Myc expression. By downregulating glucose consumption and lactate production, PKM2 pS333 attenuates the Warburg effect. Through mouse xenograft assays, we demonstrate that the phospho-deficient PKM2-S333A mutant promotes tumor growth in vivo. In conclusion, we identified a ULK1-PKM2-c-Myc axis in inhibiting breast cancer, and a glucose-sensitive phosphorylation of PKM2 in modulating the Warburg effect.


Subject(s)
Autophagy-Related Protein-1 Homolog , Breast Neoplasms , Carrier Proteins , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Warburg Effect, Oncologic , Humans , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Phosphorylation , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Mice , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Acetylglucosamine/metabolism
4.
J Proteome Res ; 23(2): 550-559, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38153036

ABSTRACT

In bottom-up proteomics, peptide-spectrum matching is critical for peptide and protein identification. Recently, deep learning models have been used to predict tandem mass spectra of peptides, enabling the calculation of similarity scores between the predicted and experimental spectra for peptide-spectrum matching. These models follow the supervised learning paradigm, which trains a general model using paired peptides and spectra from standard data sets and directly employs the model on experimental data. However, this approach can lead to inaccurate predictions due to differences between the training data and the experimental data, such as sample types, enzyme specificity, and instrument calibration. To tackle this problem, we developed a test-time training paradigm that adapts the pretrained model to generate experimental data-specific models, namely, PepT3. PepT3 yields a 10-40% increase in peptide identification depending on the variability in training and experimental data. Intriguingly, when applied to a patient-derived immunopeptidomic sample, PepT3 increases the identification of tumor-specific immunopeptide candidates by 60%. Two-thirds of the newly identified candidates are predicted to bind to the patient's human leukocyte antigen isoforms. To facilitate access of the model and all the results, we have archived all the intermediate files in Zenodo.org with identifier 8231084.


Subject(s)
Peptides , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Proteins , Models, Theoretical , Proteomics/methods , Algorithms
5.
PLoS Biol ; 21(12): e3002421, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048304

ABSTRACT

Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation. We identify the SAD-1 kinase as a regulator of SYD-2 phase separation and determine presynaptic assembly is impaired in sad-1 mutants and increased by overactivation of SAD-1. Using phosphoproteomics, we find SAD-1 phosphorylates SYD-2 on 3 sites that are critical to activate phase separation. Mechanistically, SAD-1 phosphorylation relieves a binding interaction between 2 folded domains in SYD-2 that inhibits phase separation by an intrinsically disordered region (IDR). We find synaptic cell adhesion molecules localize SAD-1 to nascent synapses upstream of active zone formation. We conclude that SAD-1 phosphorylates SYD-2 at developing synapses, activating its phase separation and active zone assembly.


Subject(s)
Caenorhabditis elegans Proteins , Presynaptic Terminals , Animals , Presynaptic Terminals/metabolism , Caenorhabditis elegans Proteins/metabolism , Synapses/metabolism , Caenorhabditis elegans/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
6.
Nat Commun ; 14(1): 8334, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097609

ABSTRACT

Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.


Subject(s)
Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Antidotes , Ubiquitination , Golgi Apparatus/metabolism , Ubiquitin/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
PLoS Biol ; 21(11): e3002372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939137

ABSTRACT

Selective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8. However, ER-phagy/nucleophagy cargos fail to reach the vacuole. Instead, nucleus- and cortical-ER-derived membrane structures not enclosed within autophagosomes accumulate in the cytoplasm. Intriguingly, the outer membranes of nucleus-derived structures remain continuous with the nuclear envelope-ER network, suggesting a possible outer membrane fission defect during cargo separation from source compartments. We find that the ER-phagy role of Yep1 relies on its abilities to self-interact and shape membranes and requires its C-terminal amphipathic helices. Moreover, we show that human REEP1-4 and budding yeast Atg40 can functionally substitute for Yep1 in ER-phagy, and Atg40 is a divergent ortholog of Yep1 and REEP1-4. Our findings uncover an unexpected mechanism governing the autophagosomal enclosure of ER-phagy/nucleophagy cargos and shed new light on the functions and evolution of REEP family proteins.


Subject(s)
Schizosaccharomyces , Humans , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Autophagy/genetics , Endoplasmic Reticulum/metabolism , Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Endoplasmic Reticulum Stress , Membrane Transport Proteins/metabolism
8.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38031990

ABSTRACT

Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.


Subject(s)
Drosophila Proteins , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Drosophila Proteins/metabolism , Tunicamycin/metabolism , Trans-Activators/metabolism , Cell Proliferation , Nuclear Proteins/metabolism , Homeostasis , Drosophila melanogaster/metabolism
10.
Traffic ; 24(12): 552-563, 2023 12.
Article in English | MEDLINE | ID: mdl-37642208

ABSTRACT

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Subject(s)
Drosophila Proteins , Animals , Cell Polarity , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Dynactin Complex/metabolism , Dyneins/metabolism , Epithelial Cells/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
11.
bioRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398223

ABSTRACT

Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through a liquid-liquid phase separation. Here, we find that the phase separation of SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation. Using phosphoproteomics, we identify the SAD-1 kinase to phosphorylate SYD-2 and a number of other substrates. Presynaptic assembly is impaired in sad-1 mutants and increased by overactivation of SAD-1. We determine SAD-1 phosphorylation of SYD-2 at three sites is critical to activate its phase separation. Mechanistically, phosphorylation relieves a binding interaction between two folded SYD-2 domains that inhibits phase separation by an intrinsically disordered region. We find synaptic cell adhesion molecules localize SAD-1 to nascent synapses upstream of active zone formation. We conclude that SAD-1 phosphorylates SYD-2 at developing synapses, enabling its phase separation and active zone assembly.

12.
J Am Soc Mass Spectrom ; 34(8): 1598-1608, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37463304

ABSTRACT

Mass spectrometry (MS)-based analysis of RNA oligonucleotides (oligos) plays an increasingly important role in the development of RNA therapeutics and epitranscriptomics research. However, MS fragmentation behaviors of RNA oligomers are understood insufficiently. Herein, we characterized the negative-ion-mode fragmentation behaviors of 26 synthetic RNA oligos containing four to eight nucleotides using collision-induced dissociation (CID) on a high-resolution, accurate-mass instrument. We found that in CID spectra acquired under the normalized collision energy (NCE) of 35%, approximately 70% of the total peak intensity was attributed to sequencing ions (a-B, a, b, c, d, w, x, y, z), around 25% of the peak intensity came from precursor ions that experienced complete or partial loss of a nucleobase in the form of either a neutral or an anion, and the remainder were internal ions and anionic nucleobases. The top five sequencing ions were the y, c, w, a-B, and a ions. Furthermore, we observed that CID fragmentation behaviors of RNA oligos were significantly impacted by their precursor charge. Specifically, when the precursors had a charge from 1- to 5-, the fractional intensity of sequencing ions decreased, while that of precursors that underwent either neutral or charged losses of a nucleobase increased. Additionally, we found that RNA oligos containing 3'-U tended to produce precursors with HNCO and/or NCO- losses, which presumably corresponded to isocyanic acid and cyanate anion, respectively. These findings provide valuable insights for better comprehending the mechanism behind RNA fragmentation by MS/MS, thereby facilitating the future automated identification of RNA oligos based on their CID spectra in a more efficient manner.


Subject(s)
Oligonucleotides , Tandem Mass Spectrometry , Oligonucleotides/chemistry , Tandem Mass Spectrometry/methods , RNA , Ions/chemistry , Anions , Spectrometry, Mass, Electrospray Ionization
13.
J Proteome Res ; 22(8): 2593-2607, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37494005

ABSTRACT

When it comes to mass spectrometry data analysis for identification of peptide pairs linked by N-hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links. This is true across different NHS ester cross-linkers including DSS, DSSO, and DSBU, and across different search engines including MeroX, xiSearch, and pLink. Using a published data set originated from synthetic peptides, we demonstrate that STY-cross-links indeed have a high false discovery rate. Further analysis revealed that depending on the data and the search engine used to analyze the data, up to 65% of the STY-cross-links identified are actually K-K cross-links of the same peptide pairs, up to 61% are actually K-mono-links, and the rest tend to contain short peptides at high risk of false identification.


Subject(s)
Esters , Proteins , Cross-Linking Reagents/chemistry , Mass Spectrometry/methods , Peptides/chemistry , Proteins/metabolism
15.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37044097

ABSTRACT

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Subject(s)
Cytoskeleton , Erythrocytes , Animals , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Spectrin/analysis , Spectrin/metabolism , Swine
16.
J Biol Chem ; 299(6): 104738, 2023 06.
Article in English | MEDLINE | ID: mdl-37086786

ABSTRACT

O-linked GlcNAc (O-GlcNAc) is an emerging post-translation modification that couples metabolism with cellular signal transduction by crosstalk with phosphorylation and ubiquitination to orchestrate various biological processes. The mechanisms underlying the involvement of O-GlcNAc modifications in N6-methyladenosine (m6A) regulation are not fully characterized. Herein, we show that O-GlcNAc modifies the m6A mRNA reader YTH domain family 1 (YTHDF1) and fine-tunes its nuclear translocation by the exportin protein Crm1. First, we present evidence that YTHDF1 interacts with the sole O-GlcNAc transferase (OGT). Second, we verified Ser196/Ser197/Ser198 as the YTHDF1 O-GlcNAcylation sites, as described in numerous chemoproteomic studies. Then we constructed the O-GlcNAc-deficient YTHDF1-S196A/S197F/S198A (AFA) mutant, which significantly attenuated O-GlcNAc signals. Moreover, we revealed that YTHDF1 is a nucleocytoplasmic protein, whose nuclear export is mediated by Crm1. Furthermore, O-GlcNAcylation increases the cytosolic portion of YTHDF1 by enhancing binding with Crm1, thus upregulating downstream target (e.g. c-Myc) expression. Molecular dynamics simulations suggest that O-GlcNAcylation at S197 promotes the binding between the nuclear export signal motif and Crm1 through increasing hydrogen bonding. Mouse xenograft assays further demonstrate that YTHDF1-AFA mutants decreased the colon cancer mass and size via decreasing c-Myc expression. In sum, we found that YTHDF1 is a nucleocytoplasmic protein, whose cytosolic localization is dependent on O-GlcNAc modification. We propose that the OGT-YTHDF1-c-Myc axis underlies colorectal cancer tumorigenesis.


Subject(s)
Colorectal Neoplasms , Protein Processing, Post-Translational , Mice , Animals , Humans , Phosphorylation , Ubiquitination , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
17.
G3 (Bethesda) ; 13(4)2023 04 11.
Article in English | MEDLINE | ID: mdl-36735812

ABSTRACT

Abnormal nuclear morphology is suggested to be a hallmark of aging and one such abnormality is nuclear blebbing. However, little is known about whether and how nuclear blebbing participates in animal aging, and what regulates it. In this study, we show that the frequency of nuclear blebbing in the hypodermis increases during aging in wild-type C. elegans. These nuclear blebs are enveloped by the nuclear lamina, the inner and the outer nuclear membrane, and 42% of them contain chromatin. Although nuclear blebbing could lead to DNA loss if chromatin-containing blebs detach and fuse with lysosomes, we find by time-lapse imaging that nuclear blebs rarely detach, and the estimated lifetime of a nuclear bleb is 772 h or 32 days. The amount of DNA lost through nuclear blebbing is estimated to be about 0.1% of the total DNA loss by adult Day 11. Furthermore, the frequency of nuclear blebbing does not correlate with the rate of aging in C. elegans. Old age does not necessarily induce nuclear blebbing, neither does starvation, heat stress, or oxidative stress. Intriguingly, we find that proliferation of germ cells promotes nuclear blebbing.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Proliferation , Chromatin/genetics , Germ Cells
18.
J Biol Chem ; 299(2): 102887, 2023 02.
Article in English | MEDLINE | ID: mdl-36626982

ABSTRACT

The O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates intracellular O-GlcNAcylation modification. O-GlcNAcylation occurs on Ser/Thr residues and is important for numerous physiological processes. OGT is essential for dividing mammalian cells and is involved in many human diseases; however, many of its fundamental substrates during cell division remain unknown. Here, we focus on the effect of OGT on polo-like kinase 1 (PLK1), a mitotic master kinase that governs DNA replication, mitotic entry, chromosome segregation, and mitotic exit. We show that PLK1 interacts with OGT and is O-GlcNAcylated. By utilizing stepped collisional energy/higher-energy collisional dissociation mass spectrometry, we found a peptide fragment of PLK1 that is modified by O-GlcNAc. Further mutation analysis of PLK1 shows that the T291A mutant decreases O-GlcNAcylation. Interestingly, T291N is a uterine carcinoma mutant in The Cancer Genome Atlas. Our biochemical assays demonstrate that T291A and T291N both increase PLK1 stability. Using stable H2B-GFP cells, we found that PLK1-T291A and PLK1-T291N mutants display chromosome segregation defects and result in misaligned and lagging chromosomes. In mouse xenograft models, we demonstrate that the O-GlcNAc-deficient PLK1-T291A and PLK1-T291N mutants enhance uterine carcinoma in animals. Hence, we propose that OGT partially exerts its mitotic function through O-GlcNAcylation of PLK1, which might be one mechanism by which elevated levels of O-GlcNAc promote tumorigenesis.


Subject(s)
Cell Division , Protein Serine-Threonine Kinases , Uterine Neoplasms , Animals , Female , Humans , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Uterine Neoplasms/enzymology , Uterine Neoplasms/genetics , Acylation , Cell Division/physiology , Mutation , Polo-Like Kinase 1
19.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36413996

ABSTRACT

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Subject(s)
Algal Proteins , Chlamydomonas , Chloroplasts , Chloroplasts/metabolism , Cryoelectron Microscopy , Intracellular Membranes/metabolism , Protein Transport , Chlamydomonas/chemistry , Chlamydomonas/cytology , Multiprotein Complexes/metabolism , Algal Proteins/metabolism
20.
Aging Cell ; 21(11): e13719, 2022 11.
Article in English | MEDLINE | ID: mdl-36199214

ABSTRACT

Some of the most conspicuous aging phenotypes of C. elegans are related to post-reproductive production of vitellogenins (Vtg), which form yolk protein (YP) complexes after processing and lipid loading. Vtg/YP levels show huge increases with age, and inhibition of this extends lifespan, but how subcellular and organism-wide distribution of these proteins changes with age has not been systematically explored. Here, this has been done to understand how vitellogenesis promotes aging. The age-associated changes of intestinal vitellogenin vesicles (VVs), pseudocoelomic yolk patches (PYPs), and gonadal yolk organelles (YOs) have been characterized by immuno-electron microscopy. We find that from reproductive adult day 2 (AD 2) to post-reproductive AD 6 and AD 9, intestinal VVs expand from 0.2 to 3-4 µm in diameter or by >3000 times in volume, PYPs increase by >3 times in YP concentration and volume, while YOs in oocytes shrink slightly from 0.5 to 0.4 µm in diameter or by 49% in volume. In AD 6 and AD 9 worms, mislocalized YOs found in the hypodermis, uterine cells, and the somatic gonadal sheath can reach a size of 10 µm across in the former two tissues. This remarkable size increase of VVs and that of mislocalized YOs in post-reproductive worms are accompanied by extensive fusion between these Vtg/YP-containing vesicular structures in somatic cells. In contrast, no fusion is seen between YOs in oocytes. We propose that in addition to the continued production of Vtg, excessive fusion between VVs and mislocalized YOs in the soma worsen the aging pathologies seen in C. elegans.


Subject(s)
Caenorhabditis elegans , Vitellogenins , Animals , Vitellogenins/genetics , Vitellogenins/metabolism , Caenorhabditis elegans/metabolism , Vitellogenesis , Egg Proteins/genetics , Egg Proteins/metabolism , Oocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...