Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 105
1.
JAMA Netw Open ; 7(5): e2410134, 2024 May 01.
Article En | MEDLINE | ID: mdl-38728032

Importance: Platelet-rich plasma (PRP) has been considered a promising treatment for musculoskeletal disorders. The effects of PRP on clinical outcomes of anterior cruciate ligament reconstruction (ACLR) are controversial. Objective: To compare subjective outcomes and graft maturity in patients undergoing ACLR with and without postoperative intra-articular PRP injection. Design, Setting, and Participants: This surgeon- and investigator-masked randomized clinical trial included patients treated at a national medical center in China who were aged 16 to 45 years and scheduled to undergo ACLR. Participants were enrolled between March 21, 2021, and August 18, 2022, and followed up for 12 months, with the last participant completing follow-up on August 28, 2023. Interventions: Participants were randomized 1:1 to the PRP group (n = 60), which received 3 doses of postoperative intra-articular PRP injection at monthly intervals, or to the control group (n = 60), which did not receive postoperative PRP injection. Both groups had the same follow-up schedule. Main Outcomes and Measures: The primary outcome was the mean score for 4 subscales of the Knee Injury and Osteoarthritis Outcome Score (KOOS4) (range, 0-100, with higher scores indicating better knee function and fewer symptoms) at 12 months postoperatively. Secondary outcomes were patient-reported outcomes, graft maturity (on magnetic resonance imaging), and physical examinations at 3, 6, and 12 months. Results: Among the 120 randomized participants (mean [SD] age, 29.0 [8.0] years; 84 males [70%]), 114 (95%) were available for the primary outcome analysis. The mean KOOS4 scores at 12 months were 78.3 (SD, 12.0; 95% CI, 75.2-81.4) in the PRP group and 76.8 (SD, 11.9; 95% CI, 73.7-79.9) in the control group (adjusted mean between-group difference, 2.0; 95% CI, -2.3 to 6.3; P = .36). Secondary outcomes were not statistically significantly different between the 2 groups except for sports and recreation level and graft maturity at 6 months. Intervention-related adverse events included pain at the injection site and knee swelling after injection. Conclusions and Relevance: In this randomized clinical trial among patients undergoing ACLR, the addition of postoperative intra-articular PRP injection did not result in superior improvement of knee symptoms and function at 12 months compared with no postoperative injection. Further studies are required to determine appropriate indications for PRP in musculoskeletal disorders. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2000040262.


Anterior Cruciate Ligament Reconstruction , Platelet-Rich Plasma , Humans , Anterior Cruciate Ligament Reconstruction/methods , Adult , Male , Female , Injections, Intra-Articular , Young Adult , Adolescent , Middle Aged , China , Treatment Outcome , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/therapy
2.
Front Plant Sci ; 15: 1352834, 2024.
Article En | MEDLINE | ID: mdl-38590743

Alpine wetland degradation threatens riparian biodiversity and ecological balance. Our study, conducted in July 2020 along the northern and eastern shores of Qinghai Lake, seeks to unravel the impacts of such degradation on plant species dominance and ecological niches, using advanced network analysis methods to explore the dynamics and survival strategies of plant species. We applied a space-to-time method to delineate three wetland degradation stage: a healthy swamp wetland, a slightly degraded wet meadow, and a degraded dry meadow. Six representative sampling points were chosen. At each point, three sample lines were randomly established, radiating outward from the center of the lake wetland, with each stage of degradation meticulously examined through three replicates to assess the plant communities in terms of species composition, plant height, coverage, and abundance. The results indicated: Species such as Kobresia tibetica and Leymus secalinus exhibit remarkable abundance across various stages of wetland degradation, indicating a robust tolerance to these conditions. This observation, coupled with the complexity of plant community structures in degrading wetlands, suggests that such intricacy cannot be solely attributed to the dominance of particular species. Instead, it is the result of a diverse array of species adapting to fluctuating water levels, which promotes increased species richness. Despite the prominence of species that exhibit rapid growth and reproduction, the ecological significance of less abundant species in contributing to the community's complexity is also notable. Changes in habitat conditions due to wetland degradation facilitate both competitive and cooperative interactions among species, highlighting the dynamic nature of these ecosystems. Our analysis shows no significant linear relationship between the ecological niche overlap values and niche widths of plant species. However, the strategies employed by dominant species for competition and resource acquisition, as observed in the ecological niche overlap networks, underscore the adaptive capacity of plant communities. These insights underscore the need for tailored restoration strategies to conserve the biodiversity of alpine lake riparian ecosystems. This research not only sheds light on the resilience and adaptability of ecosystems in the Qinghai-Tibetan Plateau but also offers valuable lessons for the conservation of similar habitats worldwide. Our findings underscore the need for tailored restoration strategies to conserve the biodiversity of alpine lake riparian ecosystems. This research not only sheds light on the resilience and adaptability of ecosystems in the Qinghai-Tibetan Plateau but also offers valuable lessons for the conservation of similar habitats worldwide.

3.
Sci Total Environ ; 924: 171439, 2024 May 10.
Article En | MEDLINE | ID: mdl-38438023

Grazing can potentially affect grassland soil carbon storage through selective feeding, trampling and fecal excretion of livestock. The numerous case studies and a few meta-analyses have focused on grazing-induced changes in soil organic carbon (SOC) storage, but the effects of grazing on SOC in major grassland types of China are not clear. In this study, we performed a comprehensive meta-analysis to identify the impact of grazing on soil carbon in China. We found that the key factors affecting the SOC content of grazing grasslands is grazing intensity. Heavy grazing (HG) significantly decreased the SOC content by 7.5 % in major grassland types of China (95 % confidence interval (CI), -11.43 % to -3.57 %, P < 0.001). The SOC content in temperate desert steppes (7.22 %), temperate meadow-steppes (10.89 %) under heavy grazing (HG) showed significantly (P < 0.05) decreased. HG resulted in significant (P < 0.01) decreases in SOC content (6.91 %) of Kastanoze. Our study highlighted that formulating rational grazing strategies according to grassland and soil types was the key to increasing SOC storage and sequestration under climate change and increased human pressure.

4.
Sci Total Environ ; 918: 170638, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38316299

Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated historical and future PM2.5 concentrations and associated OP using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. Considering different future socio-economic pathways and emission scenario assumptions, we quantified how the contribution from various anthropogenic emission sectors will change under these scenarios. Results show that compared to the CESM_SSP2-4.5_CLE scenario (based on moderate radiative forcing and Current Legislation Emission), the CESM_SSP1-2.6_MFR scenario (based on sustainability development and Maximum Feasible Reductions) is projected to yield greater environmental and health benefits in the future. Under the CESM_SSP1-2.6_MFR scenario, annual average PM2.5 concentrations (OP) are expected to decrease to 30 (0.8 nmolmin-1m-3) in almost all regions by 2030, which will be 65 % (67 %) lower than that in 2010. From a long-term perspective, it is anticipated that OP in the Fen-Wei Plain region will experience the maximum reduction (82.6 %) from 2010 to 2049. Largely benefiting from the effective control of PM2.5 in the region, it has decreased by 82.1 %. Crucially, once emission reduction measures reach a certain level (in 2040), further reductions become less significant. This study also emphasized the significant role of secondary aerosol formation and biomass-burning sources in influencing OP during both historical and future periods. In different scenarios, the reduction range of OP from 2010 to 2049 is estimated to be between 71 % and 85 % by controlling precursor emissions involved in secondary aerosol formation and emissions from biomass burning. Results indicate that strengthening the control of anthropogenic emissions in various regions are key to achieving air quality targets and safeguarding human health in the future.

5.
Am J Sports Med ; 52(4): 936-947, 2024 Mar.
Article En | MEDLINE | ID: mdl-38349070

BACKGROUND: An anterior cruciate ligament (ACL) injury accompanied by patellar instability (PI) is a topic that has gained orthopaedic surgeons' attention recently. Untreated PI is reportedly associated with worse clinical outcomes after isolated ACL reconstruction (ACLR) in patients after an ACL injury with PI. Nevertheless, the appropriate surgical approach and its long-term therapeutic effects in these patients remain unclear. PURPOSE: (1) To compare the clinical and radiological outcomes between isolated ACLR (iACLR) and combined ACLR and medial patellofemoral ligament reconstruction (cAMR) in patients after an ACL injury with PI and (2) to explore the correlations between these 2 procedures and clinical and radiological outcomes. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: A total of 106 patients diagnosed with an ACL injury accompanied by PI between January 2016 and April 2021 were analyzed in this study. There were 34 patients excluded because of missing postoperative radiological data. Among the remaining 72 patients, 34 patients underwent iACLR, while 38 patients underwent cAMR. Demographic characteristics, intraoperative findings, and patient-reported outcomes (Lysholm score, subjective International Knee Documentation Committee score, and Tegner activity score) were prospectively collected. Patellar alignment parameters and worsening patellofemoral osteoarthritis (PFOA) features (evaluated with the modified Whole-Organ Magnetic Resonance Imaging Score) were analyzed longitudinally on magnetic resonance imaging. The Kujala score was used to evaluate the functional recovery of the patellofemoral joint, and redislocations of the patella were prospectively recorded. Finally, multivariate logistic regression analysis was used to explore the correlations between these 2 procedures and clinical (not achieving the minimal detectable change [MDC] for the Lysholm score) and radiological (worsening PFOA features) outcomes. RESULTS: The mean follow-up duration was 28.9 ± 6.2 and 27.1 ± 6.8 months for the iACLR and cAMR groups, respectively (P = .231). Significantly higher Lysholm scores (88.3 ± 9.9 vs 82.1 ± 11.1, respectively; P = .016) and subjective International Knee Documentation Committee scores (83.6 ± 11.9 vs 78.3 ± 10.2, respectively; P = .046) were detected in the cAMR group compared with the iACLR group postoperatively. The rates of return to preinjury sports were 20.6% and 44.7% in the iACLR and cAMR groups, respectively (difference, 24.1% [95% CI, 3.3%-45.0%]; P = .030). Moreover, the rates of worsening PFOA features were 44.1% and 18.4% in the iACLR and cAMR groups, respectively (difference, 25.7% [95% CI, 4.9%-46.4%]; P = .018). In addition, significantly higher Kujala scores (87.9 ± 11.3 vs 80.1 ± 12.0, respectively; P = .006), lower redislocation rates (0.0% vs 11.8%, respectively; difference, 11.8% [95% CI, 0.9%-22.6%]; P = .045), and significantly better patellar alignment were detected in the cAMR group compared with the iACLR group postoperatively. Furthermore, multivariate logistic regression analysis determined that iACLR and partial lateral meniscectomy were significantly correlated with not achieving the MDC for the Lysholm score and worsening PFOA features in our study population. CONCLUSION: In patients after an ACL injury with PI, cAMR yielded better clinical and radiological outcomes compared with iACLR, with better patellar stability and a lower proportion of worsening PFOA features. Furthermore, not achieving the MDC for the Lysholm score and worsening PFOA features were significantly correlated with iACLR and partial lateral meniscectomy. Our study suggests that cAMR may be a more appropriate procedure for patients after an ACL injury with PI, which warrants further high-level clinical evidence.


Anterior Cruciate Ligament Injuries , Joint Instability , Osteoarthritis, Knee , Patellofemoral Joint , Humans , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/surgery , Cohort Studies , Patellofemoral Joint/diagnostic imaging , Patellofemoral Joint/surgery , Joint Instability/diagnostic imaging , Joint Instability/surgery , Knee Joint/surgery
6.
J Infect Public Health ; 17 Suppl 1: 76-81, 2024 Apr.
Article En | MEDLINE | ID: mdl-37291027

Although all walks of life are paying less attention to COVID-19, the spread of COVID-19 has never stopped. As an infectious disease, its transmission speed is closely related to the atmosphere environment, particularly the temperature (T) and PM2.5 concentrations. However, How T and PM2.5 concentrations are related to the spread of SARS-CoV-2 and how much their cumulative lag effect differ across cities is unclear. To identify the characteristics of cumulative lag effects of environmental exposure under city differences, this study used a generalized additive model to investigate the associations between T/PM2.5 concentrations and the daily number of new confirmed COVID-19 cases (NNCC) during the outbreak period in the second half of 2021 in Shaoxing, Shijiazhuang, and Dalian. The results showed that except for PM2.5 concentrations in Shaoxing, the NNCC in the three cities generally increased with the unit increase of T and PM2.5 concentrations. In addition, the cumulative lag effects of T/PM2.5 concentrations on NNCC in the three cities reached a peak at lag 26/25, lag 10/26, and lag 18/13 days, respectively, indicating that the response of NNCC to T and PM2.5 concentrations varies among different regions. Therefore, combining local meteorological and air quality conditions to adopt responsive measures is an important way to prevent and control the spread of SARS-CoV-2.


Air Pollutants , COVID-19 , Humans , COVID-19/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis , SARS-CoV-2 , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Cities/epidemiology , China/epidemiology
7.
Front Plant Sci ; 14: 1240719, 2023.
Article En | MEDLINE | ID: mdl-37915511

Earthquakes are environmental disturbances affecting ecosystem functioning, health, and biodiversity, but their potential impacts on plant-soil interface are still poorly understood. In this study, grassland habitats in areas near and away from the seismo-fault in Madou, a region typical of alpine conditions on the Qinghai-Tibetan Plateau, were randomly selected. The impacts of earthquake on soil properties and plant nutrient content in the short term were emphasized, and their potential relationships with community diversity and productivity were examined. According to the findings of the study, the Maduo earthquake led to a decrease in soil nutrient content in alpine grassland ecosystems, especially soil TC, TN, TP, TCa, AP, AK, NH4 +-N, and SOC, and inhibited the absorption of N, Ca, and Mg nutrients by plants. In addition, the diversity and productivity of communities were affected by both direct and indirect earthquake pathways. The negative impacts of seismic fracture on soil structure had the most significant direct impact on plant community diversity. Earthquakes also indirectly reduced community productivity by reducing the soil N content and inhibiting the absorption of plant nutrients. Our findings suggested that earthquakes could potentially decrease the stability of the alpine grassland ecosystem on the QTP by affecting nutrient availability at the plant-soil interface.

8.
Ying Yong Sheng Tai Xue Bao ; 34(11): 3053-3063, 2023 Nov.
Article En | MEDLINE | ID: mdl-37997417

The Qinghai-Tibet Plateau is the key and largest ecological hotspot globally with enormous multiple ecosystem services. The vast and unique alpine ecosystems in this area have been subjected to the increased human disturbances, such as intensified land use. To explore the magnitude, spatiotemporal pattern and transformation process of land use in the Qinghai-Tibet Plateau and their impacts on the major ecosystem services during 1980-2020, we used the Integrated Valuation of Ecosystem Services and Trade-offs model to simulate the spatiotemporal variations of three types of ecosystem services, including habitat quality, carbon storage, and water yield. We analyzed the impacts of land use change on ecosystem services. The findings revealed that land use pattern remained generally stable from 1980 to 2020, with alpine grassland and desert as the dominant land use types. Habitat quality had generally enhanced, while carbon storage and water yield increased firstly and then declined. The magnitudes of three services gradually increased from the northwest to the southeast, corresponding to the spatial transformation pattern from desert via grassland to forest. The correlation between land use intensity and ecosystem services showed significant spatial heterogeneity, particulaly in counties greatly affected by land use intensity which concentrated predominantly in the mid-west, southern, and mid-east regions of the Qinghai-Tibet Plateau. The results have certain guiding significance for formulating land use policy and regulating land use pattern of alpine ecosystems in the Qinghai-Tibet Plateau.


Carbon , Ecosystem , Humans , Tibet , China , Water
9.
Insect Sci ; 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37828914

Insects are the most diverse group of organisms in the animal kingdom, and some species exhibit complex social behaviors. Although research on insect object use is still in its early stages, insects have already been shown to display rich object-use behaviors. This review focuses on patterns and behavioral flexibility in insect object-use behavior, and the role of cultural evolution in the development of object-use behaviors. Object use in insects is not widespread but has been documented in a diverse set of taxa. Some insects can use objects flexibly and display various object-use patterns. Like mammals and birds, insects use objects in diverse activities, including foraging, predator defense, courtship, and play. Intelligence, pre-existing manipulative behaviors, and anatomical structure affect innovations in object use. In addition, learning and imitation are the main mechanisms underlying the spread of object-use behaviors within populations. Given that insects are one of the major animal groups engaging in object use, studies of insect object use could provide general insights into object use in the animal kingdom.

10.
Am J Sports Med ; 51(11): 2831-2841, 2023 09.
Article En | MEDLINE | ID: mdl-37593843

BACKGROUND: Rotator cuff tear size, fatty infiltration, and scapular morphology are correlated with tendon healing and functional outcomes after arthroscopic repair; however, the association between anteroposterior acromial coverage and the clinical outcomes of anteroposterior massive rotator cuff tears (AP-MRCTs; involving all 3 tendons) remains unclear. PURPOSE: To identify the association between AP acromial coverage and functional and radiological outcomes after arthroscopic repair of AP-MRCTs. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: A total of 98 patients who underwent arthroscopic repair of AP-MRCTs between January 2015 and December 2020 were included in the study and classified according to whether anterior acromial coverage (AAC) was anterior (46 patients; positive AAC group) or posterior (52 patients; negative AAC group) to the scapular line on true lateral shoulder radiographs. Demographic characteristics, surgical details, and functional outcomes were prospectively collected. Acromial morphological features, global tear extension (GTE), the global fatty infiltration index (GFII), tendon integrity after repair, proximal humeral migration, and glenohumeral abduction were measured and calculated on radiographs or magnetic resonance imaging scans preoperatively and at 2 years postoperatively. Multivariate logistic regression was performed to identify the independent risk factors of a rotator cuff retear. RESULTS: The positive AAC group showed larger AAC, posterior acromial tilt, and anterior acromial slope as well as smaller posterior acromial coverage compared with the negative AAC group. Postoperatively, the American Shoulder and Elbow Surgeons score (82.5 ± 8.3 vs 77.2 ± 11.5, respectively; P = .013), active abduction (157.8°± 27.1° vs 142.7°± 39.6°, respectively; P = .048), and glenohumeral abduction (45.6°± 10.4° vs 39.7°± 14.9°, respectively; P = .041) in the positive AAC group were significantly higher than those in the negative AAC group, while the retear rate (23.9% vs 44.2%, respectively; P = .035) and proximal humeral migration (1.7 ± 1.0 vs 2.3 ± 1.2 mm, respectively; P = .006) were significantly lower in the positive AAC group than in the negative AAC group. Smaller AAC (odds ratio [OR], 0.93 [95% CI, 0.87-1.00]; P = .040), larger GTE (OR, 1.03 [95% CI, 1.01-1.06]; P = .017), and a higher GFII (OR, 3.49 [95% CI, 1.09-11.19]; P = .036) were associated with an increased risk of a rotator cuff retear. CONCLUSION: Increased AAC was associated with a lower retear rate and better functional outcomes after arthroscopic repair of AP-MRCTs. A preliminary risk evaluation integrating GTE, the GFII, and AAC is recommended to consider the necessity of additional procedures for patients in need of arthroscopic rotator cuff repair.


Lacerations , Rotator Cuff Injuries , Humans , Rotator Cuff Injuries/diagnostic imaging , Rotator Cuff Injuries/surgery , Cohort Studies , Radiography , Acromion/diagnostic imaging , Acromion/surgery , Rotator Cuff/diagnostic imaging , Rotator Cuff/surgery
11.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Article En | MEDLINE | ID: mdl-37517987

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Ecosystem , Grassland , Humans , Tibet , Climate Change , China
12.
Sci Total Environ ; 892: 164522, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37268148

Plant phenology is the bridge between climate change and ecosystem functions. Time coordination of interspecific and intraspecific phenology changes overlap or separate can be regarded as an important characteristic of species coexistence. To confirm the hypothesis that plant phenological niche promotes species coexistence, three key alpine plants, Kobresia humilis (sedge), Stipa purpurea (grass), and Astragalus laxmannii (forb) were investigated in this study in the Qinghai-Tibet Plateau. Phenological niches represented as the duration of green up-flowering, flowering-fruiting, and fruiting-withering by 2-day intervals for phenological dynamics of three key alpine plants from 1997 to 2016. We found the role of precipitation on regulating the phenological niches of alpine plants was highlighted in the context of climate warming. The response of the intraspecific phenological niche of the three species to temperature and precipitation is different, and the phenological niche of Kobresia humilis and Stipa purpurea was separate, especially in the green up-flowering. But the overlapping degree of interspecific phenological niche of the three species has continued to increase in the past 20 years, reducing possibility of species coexistence. Our findings have profound implications for understanding the adaptation strategies of key alpine plants to climate change in the dimension of phenological niche.


Carex Plant , Ecosystem , Climate Change , Plants , Poaceae , Tibet , Temperature , Seasons
13.
J Anim Ecol ; 92(7): 1345-1356, 2023 07.
Article En | MEDLINE | ID: mdl-37211647

Over the last 40 years, a burrowing mammal eradication policy has been prevalent on the Qinghai-Tibetan Plateau (QTP). This policy is based on similar burrowing mammal eradication programs in other areas and is justified on the assumptions that burrowing mammals compete with livestock for forage and contribute to grassland degradation. However, there is no clear theoretical or experimental evidence supporting these assumptions. This paper synthesizes the ecological functioning of small burrowing mammals in natural grasslands and discusses the irrationality and consequences of burrowing mammal eradication for sustainable livestock grazing and grassland degradation. Past burrowing mammal eradication efforts have failed because increased food availability for the remaining rodents and reduced predator populations led to rapid population rebounds. Herbivores differ in diet, and there is clear evidence that burrowing mammals, especially plateau zokors Myospalax baileyi, have a different diet than livestock. In QTP meadows, burrowing mammal eradication induces a shift towards plant communities with fewer species preferred by livestock and more species preferred by burrowing mammals. Thus, eradicating burrowing mammals has the opposite effect, a reduction in livestock preferred vegetation. We suggest that the policy of poisoning burrowing mammals needs to be reconsidered and revoked as soon as possible. We argue that incorporating density-dependent factors such as predation and food availability are essential for maintaining a low burrowing mammal density. For degraded grasslands, we suggest that the optimal sustainable approach is to decrease the intensity of livestock grazing. Lower grazing induces changes in vegetation structure and plant species composition that increases predation on burrowing mammals and decreases the abundance of plants preferred by burrowing mammals. Such a nature-based grassland management system maintains the density of burrowing mammals at a low stable density while minimizing human management and interventions.


Grassland , Mammals , Humans , Animals , Mammals/physiology , Rodentia , Herbivory , Plants , Livestock/physiology , Ecosystem
14.
Am J Sports Med ; 51(7): 1698-1707, 2023 06.
Article En | MEDLINE | ID: mdl-37092733

BACKGROUND: High-grade knee laxity and excessive anterior tibial subluxation (ATS) are correlated with poor clinical outcomes in patients with anterior cruciate ligament (ACL) deficiency and share similar risk factors; however, the association between excessive ATS and high-grade knee laxity remains unclear. PURPOSE: To identify the association between excessive ATS and high-grade knee laxity in patients with ACL deficiency and determine the possibility that ATS can predict high-grade knee laxity. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: A total of 226 patients who underwent ACL reconstruction between May 2018 and March 2022 were analyzed in the present study; the high-grade group consisted of 113 patients who had a grade 3 result on the preoperative anterior drawer test, Lachman test, or pivot-shift test while under anesthesia, and the low-grade group consisted of 113 matched patients. The ATS values for medial and lateral compartments (ATSMC and ATSLC) were measured on magnetic resonance imaging while patients relaxed the quadriceps in the supine position under no anesthesia. The optimal cutoff values of ATSMC and ATSLC for high-grade knee laxity were determined using receiver operating characteristic curves. Univariate and multivariate logistic regression analyses with stratification were performed to identify the association between excessive ATS and high-grade knee laxity. RESULTS: Compared with the low-grade group, the high-grade group had a longer time from injury to surgery; higher rates of medial meniscus posterior horn tear (MMPHT), lateral meniscus posterior horn tear (LMPHT), and anterolateral ligament (ALL) abnormality; and larger lateral tibial slope, ATSMC, and ATSLC. The optimal cutoff value was 2.6 mm (sensitivity, 52.2%; specificity, 76.1%) for ATSMC and 4.5 mm (sensitivity, 67.3%; specificity, 64.6%) for ATSLC in predicting high-grade knee laxity. After adjustment for covariates, ATSLC ≥4.5 mm (odds ratio [OR], 2.94; 95% CI, 1.56-5.55; P = .001), MMPHT (OR, 2.62; 95% CI, 1.35-5.08; P = .004), LMPHT (OR, 2.39; 95% CI, 1.20-4.78; P = .014), and ALL abnormality (OR, 2.09; 95% CI, 1.13-3.89; P = .019) were associated with high-grade knee laxity. The association between excessive ATSLC and high-grade knee laxity was validated in patients with acute ACL injury as well as those with chronic ACL injury. CONCLUSION: Excessive ATSLC was associated with high-grade knee laxity in patients who had ACL deficiency, with a predictive cutoff value of 4.5 mm. This study may help surgeons estimate the degree of knee instability more accurately before anesthesia and may facilitate preliminary surgical decision-making, such as appropriate graft choices and consideration of extra-articular augmentation.


Anterior Cruciate Ligament Injuries , Joint Dislocations , Joint Instability , Lacerations , Humans , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/pathology , Cross-Sectional Studies , Knee Joint/diagnostic imaging , Knee Joint/surgery , Tibia , Joint Dislocations/pathology , Joint Instability/surgery , Rupture/pathology , Lacerations/pathology
16.
Knee Surg Sports Traumatol Arthrosc ; 31(7): 2784-2793, 2023 Jul.
Article En | MEDLINE | ID: mdl-36378292

PURPOSE: To compare the midterm clinical outcomes of different meniscal surgeries in patients undergoing anatomic double-bundle anterior cruciate ligament reconstruction (DB-ACLR) with eight strands of hamstring (HT8) autografts and explore the potential predictive risk factors for residual knee laxity. METHODS: From 2010 to 2017, a total of 410 patients who underwent anatomic trans-tibial DB-ACLR with HT8 autografts (169 patients without meniscal surgery, 105 patients with meniscal repair, and 136 patients with meniscal resection) were included in this study. The equivalent graft diameter was introduced to make the total graft size of DB-ACLR comparable with that of single-bundle ACLR and calculated as the square root of the quadratic sum of the diameter for each bundle. Residual laxity was defined as excessive anterior tibial translation or residual pivot shift at any follow-up visit, while graft rupture was confirmed by second-look arthroscopy or magnetic resonance imaging. RESULTS: The mean follow-up period was 8.3 ± 2.2 years. The mean equivalent graft diameter was 9.9 ± 0.7 mm. Graft rupture was confirmed in 16 (3.9%) patients, while residual laxity was detected in 72 (17.6%) patients (34 [25.0%] in the meniscal resection group vs. 22 [13.0%] in the no meniscal surgery group, p = 0.021). In the multivariate logistic regression analysis, high-grade preoperative knee laxity (odds ratio OR 2.04, p = 0.020), equivalent graft diameter < 9 mm (OR 3.31 compared with 9-10 mm, p = 0.012; OR 3.28 compared with ≥ 10 mm, p = 0.019), and meniscal resection (OR 1.94 compared with no meniscal surgery, p = 0.045) were associated with residual laxity. CONCLUSION: During a midterm follow-up, meniscal resection increased the risk of residual knee laxity even in patients undergoing anatomic DB-ACLR with HT8 autografts. Increasing the hamstring graft diameter and preserving the menisci are important strategies for ACLR to restore knee stability. LEVEL OF EVIDENCE: Level III.


Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Hamstring Tendons , Humans , Autografts/surgery , Meniscectomy , Hamstring Tendons/transplantation , Knee Joint/surgery , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Injuries/surgery
17.
Environ Sci Pollut Res Int ; 30(6): 15282-15292, 2023 Feb.
Article En | MEDLINE | ID: mdl-36166121

Warming and N (nitrogen) deposition are the two main driving factors of global change. We examined the effects of increased N deposition (8 kg ha-1 year-1) and warming, as well as their combined effect on the leaf photosynthetic pigments of Leymus secalinus, which is one of the key alpine plants growing in different grassland habitats on Qinghai-Tibetan plateau. In 2014, the experiments were established in 12 plots (2×5m) of three types of habitats including alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) with the following treatments: CK (control treatment), N (only N deposition), W (only warming), and W&N (warming combined with N deposition). Results showed that the effects of warming and N deposition on photosynthetic pigments of Leymus secalinus varied with different grassland habitat types. In three grassland types, warming led to no significant effects on the total chlorophyll content of L. secalinus, while N deposition alone only significantly enhanced total chlorophyll content in alpine meadow and cultivated grassland. N deposition combined with warming only significantly enhanced total chlorophyll content of L. secalinus in alpine steppe and cultivated grassland. Chla content plays an important role in determining the variation of total chlorophyll content. Chla/Chlb ratio of L. secalinus was more stable in alpine meadow compared with that of L. secalinus in the other two grassland types. Car/Chl ratio of L. secalinus was not prone to be affected by warming and N deposition in all grassland types. Leaf N content was obviously positively correlated with photosynthetic pigments, especially Chla content. Warming and N deposition all affected photosynthetic pigment dynamics and tended to increase Chla by enhancing its weight. Our results highlighted that both warming and N deposition as well as their combination can alter the trade-off of photosynthetic pigments through enhancing the Chla ratio in L. secalinus. In addition, growing habitats should be within consideration when studying alpine plants adaptation mechanism to global change in the future.


Grassland , Soil , Tibet , Ecosystem , Poaceae , Plants , Chlorophyll , Plant Leaves
18.
Front Plant Sci ; 13: 1040377, 2022.
Article En | MEDLINE | ID: mdl-36407621

Biodiversity is the decisive factor of grassland ecological function and process. As the most important human use of grassland, grazing inevitably affects the grassland biodiversity. However, comprehensive studies of seasonal grazing on plant and soil bacterial, archaeal and fungal diversity of typical temperate grassland are still lacking. We examined the impact of seasonal grazing, including no-grazing (NG), continuous grazing (CG), grazing in May and July (G57), grazing in June and August (G68), and grazing in July and September (G79) on grassland plant and soil microbial diversity based on a long-term field grazing experiment. The results showed that the aboveground plant biomass (AGB) of the seasonal grazing plots was significantly higher than that of the CG plots. Compared with NG, CG increased significantly the Margalef richness index of plant community, while did not significantly change the Shannon, Simpson and Pielou evenness of plant community. Grazing changed the composition and biomass of dominant vegetation. Long-term grazing decreased the proportion of Leymus chinensis (Trin.) Tzvel. and increased the proportion of Cleistogenes squarrosa (Trin.) Keng. There was no significant change in the Shannoneven, Shannon and Coverage indices of soil bacteria, archaea and fungi between NG and the grazing plots. But the Chao index of soil fungi in G57, G68 and G79 and archaea in G57, G79 was significantly higher than that in CG. The results of correlation analysis showed that the plant diversity in the CG plots was significantly negatively correlated with the soil bacterial diversity. The plant richness in the G57 and G68 plots was significantly positively correlated with the soil archaea richness. Our study showed that seasonal grazing was a sustainable grazing management strategy for maintaining typical grassland plant and soil microbial diversity in northern of China.

19.
Am J Sports Med ; 50(14): 3786-3795, 2022 12.
Article En | MEDLINE | ID: mdl-36285651

BACKGROUND: Sports levels, baseline patient-reported outcome measures (PROMs), and surgical procedures are correlated with the outcomes of anterior cruciate ligament reconstruction (ACLR). Machine learning may be superior to conventional statistical methods in making repeatable and accurate predictions. PURPOSE: To identify the best-performing machine learning models for predicting the objective and subjective clinical outcomes of ACLR and to determine the most important predictors. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 432 patients who underwent anatomic double-bundle ACLR with hamstring tendon autograft between January 2010 and February 2019 were included in the machine learning analysis. A total of 15 predictive variables and 6 outcome variables were selected to validate the logistic regression, Gaussian naïve Bayes machine, random forest, Extreme Gradient Boosting (XGBoost), isotonically calibrated XGBoost, and sigmoid calibrated XGBoost models. For each clinical outcome, the best-performing model was determined using the area under the receiver operating characteristic curve (AUC), whereas the importance and direction of each predictive variable were demonstrated in a Shapley Additive Explanations summary plot. RESULTS: The AUC and accuracy of the best-performing model, respectively, were 0.944 (excellent) and 98.6% for graft failure; 0.920 (excellent) and 91.4% for residual laxity; 0.930 (excellent) and 91.0% for failure to achieve the minimal clinically important difference (MCID) of the Lysholm score; 0.942 (excellent) and 95.1% for failure to achieve the MCID of the International Knee Documentation Committee (IKDC) score; 0.773 (fair) and 70.5% for return to preinjury sports; and 0.777 (fair) and 69.2% for return to pivoting sports. Medial meniscal resection, participation in competitive sports, and steep posterior tibial slope were top predictors of graft failure, whereas high-grade preoperative knee laxity, long follow-up period, and participation in competitive sports were top predictors of residual laxity. High preoperative Lysholm and IKDC scores were highly predictive of not achieving the MCIDs of PROMs. Young age, male sex, high preoperative IKDC score, and large graft diameter were important predictors of return to preinjury or pivoting sports. CONCLUSION: Machine learning analysis can provide reliable predictions for the objective and subjective clinical outcomes (graft failure, residual laxity, PROMs, and return to sports) of ACLR. Patient-specific evaluation and decision making are recommended before and after surgery.


Anterior Cruciate Ligament Reconstruction , Sports , Humans , Male , Bayes Theorem , Case-Control Studies , Machine Learning
20.
BMC Plant Biol ; 22(1): 396, 2022 Aug 13.
Article En | MEDLINE | ID: mdl-35964004

BACKGROUND: N (nitrogen) and P (phosphorus) play important roles in plant growth and fitness, and both are the most important limiting factors that affect grassland structure and function. However, we still know little about plant physiological responses to N and P enrichment in alpine grassland of the Qinghai-Tibetan Plateau. In our experiment, five dominant common herbaceous species were selected and their photosynthetic parameters, leaf N content, and aboveground biomass were measured. RESULTS: We found that species-specific responses to N and P enrichment were obvious at individual level. N addition (72 kg Nha-1 yr-1), P addition (36 kg Pha-1 yr-1) and NP addition (72 kg Nha-1 yr-1and 36 kg P ha-1 yr-1, simultaneously) significantly promoted net photosynthetic rate of Leymus secalinus. Differential responses also existed in the same functional groups. Responses of forb species to the nutrients addition varied, Aconitum carmichaeli was more sensitive to nutrients addition including N addition (72 kg Nha-1 yr-1), P addition (36 kg Pha-1 yr-1) and NP addition (72 kg Nha-1 yr-1and 36 kg P ha-1 yr-1). Responses of plant community photosynthetic traits were not so sensitive as those of plant individuals under N and P enrichment. CONCLUSIONS: Our findings highlighted that photosynthetic responses of alpine plants to N and P enrichment were species-specific. Grass species Leymus secalinus had a higher competitive advantage compared with other species under nutrient enrichment. Additionally, soil pH variation and nutrients imbalance induced by N and P enrichment is the main cause that affect photosynthetic traits of plant in alpine steppe of the Qinghai-Tibetan Plateau.


Grassland , Plants , Photosynthesis , Poaceae/physiology , Soil/chemistry , Tibet
...