Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.469
1.
Medicine (Baltimore) ; 103(23): e38405, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847709

RATIONALE: Ileal perforation caused by the insertion of a drainage tube is a rare complication. Hence, the utilization of surgical drains in abdominal surgery remains controversial. At present, there is a trend to reduce the utilization of drains in abdominal surgery, although certain situations may necessitate their application. PATIENT CONCERNS: A 25-year-old Chinese woman presented with a history of right lower abdominal pain persisting for 10 days. Imaging examinations, including abdominal computed tomography and ultrasound, identified low-density lesions measuring 10 × 8 × 8cm3 in the right lower abdomen, which are consistent with perforated appendicitis complicated by a peri-appendiceal abscess. A laparoscopic appendectomy was carried out. On the 5th postoperative day, the drainage fluid changed to a grass-green color (80mL). Imaging with retrograde contrast through the drainage tube revealed that the 26 Fr silicon rubber drainage tube tip was positioned 50cm away from the ileocecal junction within the ileum. Both the ileal and ileocecal regions appeared well-developed. INTERVENTION AND OUTCOMES: Oral intake was suspended, and the patient received antacids, somatostatin, antibiotics, and total parenteral nutrition. On the 19th postoperative day, a follow-up imaging procedure using retrograde contrast through the drainage tube indicated that the tube tip was sealed. The treatment concluded on day 33 postoperatively, and the patient was discharged. DISCUSSION AND CONCLUSION: Ileal perforation due to an abdominal drainage tube following laparoscopic appendectomy constitutes a rare but serious complication. However, due to the adhesion and inflammatory changes around the abscess, laparoscopic dissection becomes a challenging and risky process, and the surgical skills and experiences are particularly important. Removing the abdominal drainage tube promptly based on the characteristics of the drainage fluid is recommended. The findings provide valuable insights for surgeons navigating similar challenges.


Appendectomy , Appendicitis , Drainage , Ileum , Laparoscopy , Humans , Female , Adult , Appendectomy/methods , Appendectomy/adverse effects , Drainage/methods , Laparoscopy/methods , Laparoscopy/adverse effects , Appendicitis/surgery , Ileum/surgery , Intestinal Perforation/etiology , Intestinal Perforation/surgery , Postoperative Complications/etiology , Postoperative Complications/surgery
2.
Genome Biol ; 25(1): 117, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715110

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Pre-Eclampsia , Trophoblasts , Vascular Remodeling , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Trophoblasts/metabolism , Vascular Remodeling/genetics , Placenta/metabolism , DNA Methylation , Epigenesis, Genetic , Endothelial Cells/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Imprinting , Transforming Growth Factor beta/metabolism , Fetal Growth Retardation/genetics , Placentation/genetics , RNA-Binding Proteins , Apoptosis Regulatory Proteins
3.
Heliyon ; 10(10): e30886, 2024 May 30.
Article En | MEDLINE | ID: mdl-38784562

Human respiratory syncytial virus (RSV) is an underlying cause of lower respiratory illnesses in children, elderly and immunocompromised adults. RSV contains multiple structural and non-structural proteins with two major glycoproteins that control the initial phase of infection, fusion glycoprotein and the attachment (G) glycoprotein. G protein attaches to the ciliated cells of airways initiating the infection. The hypervariable G protein plays a vital role in evolution of RSV strains. We employed multiple bioinformatics tools on systematically accessed large-scale data to evaluate mutations, evolutionary history, and phylodynamics of RSV. Mutational analysis of central conserved region (CCR) on G protein-coding sequences between 163 and 189 positions revealed frequent mutations at site 178 in human RSV (hRSV) A while arginine to glutamine substitutions at site 180 positions in hRSV B, remained prevalent from 2009 to 2014. Phylogenetic analysis indicates multiple signature mutations within G protein responsible for diversification of clades. The USA and China have highest number of surveillance records, followed by Kenya. Markov Chain Monte Carlo Bayesian skyline plot revealed that RSV A evolved steadily from 1990 to 2000, and rapidly between 2003 and 2005. Evolution of RSV B continued from 2003 to 2022, with a high evolution stage from 2016 to 2020. Throughout evolution, cysteine residues maintained their strict conserved states while CCR has an entropy value of 0.0039(±0.0005). This study concludes the notion that RSV G glycoprotein is continuously evolving while the CCR region of G protein maintains its conserved state providing an opportunity for CCR-specific monoclonal antibodys (mAbs) and inhibitors as potential candidates for immunoprophylaxis.

4.
ACS Omega ; 9(18): 19956-19967, 2024 May 07.
Article En | MEDLINE | ID: mdl-38737079

An optical sensing approach that balances portability with cost efficiency has been designed for the reliable monitoring of fugitive methane (CH4) emissions. Employing a LiTaO3-based pyroelectric detector integrated with micro-electro-mechanical systems and a broad infrared source, the developed gas sensor adeptly measured CH4 concentrations with a low limit of detection of about 5.6 ppmv and showed rapid response times with t90 consistently under 3 s. Notably, the novelty of our method lies in its precise control and reduction of CH4 levels, enhanced by wavelet denoising. This technique, optimized through meticulous grid search, effectively mitigated noise interference noticeable at CH4 levels below 10 ppmv. Postdenoising, nonlinear regression analyses based on the modified Beer-Lambert equation returned R2 values of 0.985 and 0.982 for the training and validation sets, respectively. In conclusion, this gas sensor has been shown to be able to meet the requirements for early warning of CH4 leakage on the surface in various carbon capture, utilization, and storage projects such as enhanced oil or gas recovery projects using CO2 injection.

5.
Cell Death Discov ; 10(1): 234, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750055

Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.

6.
BMC Musculoskelet Disord ; 25(1): 397, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773452

BACKGROUND: This study aimed to evaluate the biomechanical effects of reinserted or revised subaxial cervical vertebral screws. METHODS: The first part aimed to gauge the maximum insertional torque (MIT) of 30 subaxial cervical vertebrae outfitted with 4.0-mm titanium screws. A reinsertion group was created wherein a screw was wholly removed and replaced along the same trajectory to test its maximum pullout strength (MPOS). A control group was also implemented. The second part involved implanting 4.0-mm titanium screws into 20 subaxial cervical vertebrae, testing them to failure, and then reinserting 4.5-mm revision screws along the same path to determine and compare the MIT and MPOS between the test and revision groups. RESULTS: Part I findings: No significant difference was observed in the initial insertion's maximum insertion torque (MIT) and maximum pull-out strength (MPOS) between the control and reinsertion groups. However, the MIT of the reinsertion group was substantially decreased compared to the first insertion. Moderate to high correlations were observed between the MIT and MPOS in both groups, as well as between the MIT of the first and second screw in the reinsertion group. Part II, the MIT and MPOS of the screw in the test group showed a strong correlation, while a modest correlation was observed for the revision screw used in failed cervical vertebrae screw. Additionally, the MPOS of the screw in the test group was significantly higher than that of the revision screw group. CONCLUSION: This study suggests that reinsertion of subaxial cervical vertebrae screws along the same trajectory is a viable option that does not significantly affect fixation stability. However, the use of 4.5-mm revision screws is inadequate for failed fixation cases with 4.0-mm cervical vertebral screws.


Bone Screws , Cervical Vertebrae , Torque , Cervical Vertebrae/surgery , Cervical Vertebrae/diagnostic imaging , Humans , Biomechanical Phenomena , Male , Female , Reoperation , Spinal Fusion/instrumentation , Spinal Fusion/methods , Middle Aged , Adult , Aged , Titanium , Materials Testing
7.
Article En | MEDLINE | ID: mdl-38779755

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis, and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared to control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelia Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ level in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.

8.
J Hypertens ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38780161

OBJECTIVES: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K+-induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. METHODS: In this study, we examined the impact of high-K+ intake on renal Na+/K+ transport by determining the expression of major apical Na+ transporters, diuretics responses (as a proxy for specific Na+ transporter function), urinary Na+/K+ excretion, and plasma Na+/K+ concentrations in db/db mice, a model of type 2 diabetes mellitus. RESULTS: Although db/m mice exhibited increased fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) under high-K+ intake, these responses were largely blunted in db/db mice, suggesting impaired K+-induced natriuresis and kaliuresis in diabetes. Consequently, high-K+ intake increased plasma K+ levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na+ channel (ENaC), as high-K+ intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K+ diet, indicating a key role for NCC in K+-loaded diabetic mice. Treatment with metformin enhanced urinary Na+/K+ excretion and normalized plasma K+ levels in db/db mice with a high-K+ diet, at least partially, by suppressing NCC activity. CONCLUSION: Collectively, the impaired K+-induced natriuresis in diabetic mice under high-K+ intake may be primarily attributed to impaired NCC-mediated renal K+ excretion, despite the role of NHE3.

9.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783169

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Down-Regulation , Neuronal Plasticity , Neurons , Postoperative Cognitive Complications , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Neurons/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , CA1 Region, Hippocampal/metabolism , Male , Mice, Inbred C57BL , Long-Term Potentiation , Glutamic Acid/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology
10.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38786674

Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.

11.
Plast Reconstr Surg ; 153(6): 1259-1268, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38810156

BACKGROUND: A lack of ideal filling materials is a critical limitation in current rhinoplasty. Cartilage sheet regeneration by autologous chondrocytes is expected to provide an ideal source of material. However, the inability to perform minimally invasive transplantation of cartilage sheets has greatly limited the clinical application of this material. In this article, the authors propose the concept of injectable cartilage microtissue (ICM) based on cartilage sheet technology, with the aim of achieving minimally invasive augmentation rhinoplasty in clinical practice. METHODS: Approximately 1.0 cm2 of posterior auricular cartilage was collected from 28 patients. Isolated chondrocytes were expanded, then used to construct autologous cartilage sheets by high-density seeding and in vitro culture in chondrogenic medium with cytokines (eg, transforming growth factor beta-1 and insulin-like growth factor-1) for 3 weeks. Next, ICM was prepared by granulation of the cartilage sheets; it was then injected into a subcutaneous pocket for rhinoplasty. RESULTS: ICM was successfully prepared in all patients, and its implantation efficiently raised the nasal dorsum. Magnetic resonance imaging confirmed that regenerative tissue was present at the injection site; histologic examinations demonstrated mature cartilage formation with typical cartilage lacunae and abundant cartilage-specific deposition of extracellular matrix. Excellent or good postoperative patient satisfaction results were achieved in 83.3% of patients over 5 years of follow-up. Obvious absorption of grafts occurred in only two patients (8.3%). CONCLUSIONS: These results demonstrated that ICM could facilitate stable cartilage regeneration and long-term maintenance in the human body; the implantation of ICM enabled natural augmentation of the depressed nasal dorsum. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.


Chondrocytes , Rhinoplasty , Transplantation, Autologous , Humans , Rhinoplasty/methods , Female , Follow-Up Studies , Male , Chondrocytes/transplantation , Adult , Transplantation, Autologous/methods , Young Adult , Middle Aged , Ear Cartilage/transplantation , Regeneration/physiology , Treatment Outcome , Tissue Engineering/methods , Patient Satisfaction
12.
Mol Pharm ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38819959

Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.

13.
Nano Lett ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38820129

Light management is critical to maximizing the external quantum efficiency of perovskite light-emitting diodes (PeLEDs), but strategies for enhancing light out-coupling are typically complex and expensive. Here, using a facile solvent treatment strategy, we create a layer of lithium fluoride (LiF) nanoislands that serve as a template to reconstruct the light-extracting interfaces for PeLEDs. The nanoisland interface rearranges the near-field light distribution in order to maximize the efficiency of internal light extraction. With the proper adjustment of the nanoisland size and distribution, we have achieved an optimal balance between charge injection and light out-coupling, resulting in bright, pure-red quasi-two-dimensional PeLEDs with a 21.8% peak external quantum efficiency.

14.
BMC Neurol ; 24(1): 175, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789928

BACKGROUND: Acute ischemic stroke (AIS) is one of the most common cerebrovascular diseases which accompanied by a disruption of aminothiols homeostasis. To explore the relationship of aminothiols with neurologic impairment severity, we investigated four aminothiols, homocysteine (Hcy), cysteine (Cys), cysteinylglycine (CG) and glutathione (GSH) in plasma and its influence on ischemic stroke severity in AIS patients. METHODS: A total of 150 clinical samples from AIS patients were selected for our study. The concentrations of free reduced Hcy (Hcy), own oxidized Hcy (HHcy), free reduced Cys (Cys), own oxidized Cys (cysteine, Cyss), free reduced CG (CG) and free reduced GSH (GSH) were measured by our previously developed hollow fiber centrifugal ultrafiltration (HFCF-UF) method coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The concentration ratio of Hcy to HHcy (Hcy/HHcy), Cys to Cyss (Cys/Cyss) were also calculated. The neurologic impairment severity of AIS was evaluated using National Institutes of Health Stroke Scale (NIHSS). The Spearman correlation coefficient and logistic regression analysis was used to estimate and perform the correlation between Hcy, HHcy, Cys, Cyss, CG, GSH, Hcy/HHcy, Cys/Cyss and total Hcy with NIHSS score. RESULTS: The reduced Hcy and Hcy/HHcy was both negatively correlated with NIHSS score in AIS patients with P = 0.008, r=-0.215 and P = 0.002, r=-0.249, respectively. There was no significant correlation of Cys, CG, GSH, HHcy, Cyss, Cys/Cyss and total Hcy with NIHSS score in AIS patients with P value > 0.05. CONCLUSIONS: The reduced Hcy and Hcy/HHcy, not total Hcy concentration should be used to evaluate neurologic impairment severity of AIS patient.


Cysteine , Glutathione , Homocysteine , Ischemic Stroke , Oxidation-Reduction , Severity of Illness Index , Humans , Male , Female , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Homocysteine/blood , Aged , Middle Aged , Cysteine/blood , Glutathione/blood , Dipeptides/blood , Aged, 80 and over
15.
J Dig Dis ; 25(4): 248-254, 2024 Apr.
Article En | MEDLINE | ID: mdl-38808604

OBJECTIVES: Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are prevalent functional gastrointestinal disorders (FGIDs). In this study we aimed to explore the causal association between physical activity or sedentary behavior and the risk of FD and IBS. METHODS: Mendelian randomization (MR) analysis was employed. Candidate genetic instruments for physical activity and sedentary behavior were retrieved from the latest published Genome-Wide Association Study (GWAS), which included up to 703 901 participants. Summary-level GWAS data for FD (8 875 cases and 320 387 controls) and IBS (9 323 cases and 301 931 controls) were obtained from the FinnGen study. The causal effects were mainly estimated by inverse variance weighted (IVW) method. Sensitivity analyses were implemented with Cochran's Q test, MR-Egger intercept test, leave-one-out analysis, and the funnel plot. RESULTS: No significant association of moderate-to-vigorous intensity physical activity (MVPA), leisure screen time (LST), sedentary behavior at work (SDW), and sedentary commuting (SDC) with the risk of FD was found. However, there was a suggestive correlation between MVPA and the decreased risk of FD (odds ratio [OR] 0.63, 95% confidence interval [CI] 0.39-0.99, P = 0.047). Genetically predicted MVPA decreased the risk of IBS (OR 0.58, 95% CI 0.40-0.84, P = 0.004), while increased LST was positively associated with IBS risk (OR 1.33, 95% CI 1.15-1.53, P < 0.001). No causal effects of SDW or SDC on IBS risk were observed. CONCLUSION: MVPA and LST are causally linked to the development of IBS, which will facilitate primary prevention of IBS.


Dyspepsia , Exercise , Genome-Wide Association Study , Irritable Bowel Syndrome , Mendelian Randomization Analysis , Sedentary Behavior , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/epidemiology , Dyspepsia/genetics , Dyspepsia/etiology , Risk Factors , Female , Male , Polymorphism, Single Nucleotide
16.
Article En | MEDLINE | ID: mdl-38719085

OBJECTIVE: DNA damage-inducible transcript 3 (DDIT3), as a downstream transcription factor of endoplasmic reticulum stress, is reported to regulate chondrogenic differentiation under physiological and pathological state. However, the specific involvement of DDIT3 in the degradation of condylar cartilage of temporomandibular joint osteoarthritis (TMJOA) is unclarified. DESIGN: The expression patterns of DDIT3 in condylar cartilage from monosodium iodoacetate-induced TMJOA mice were examined to uncover the potential role of DDIT3 in TMJOA. The Ddit3 knockout (Ddit3-/-) mice and their wildtype littermates (Ddit3+/+) were used to clarify the effect of DDIT3 on cartilage degradation. Primary condylar chondrocytes and ATDC5 cells were applied to explore the mechanisms of DDIT3 on autophagy and extracellular matrix (ECM) degradation in chondrocytes. The autophagy inhibitor chloroquine (CQ) was used to determine the effect of DDIT3-inhibited autophagy in vivo. RESULTS: DDIT3 were highly expressed in condylar cartilage from TMJOA mice. Ddit3 knockout alleviated condylar cartilage degradation and subchondral bone loss, compared with their wildtype littermates. In vitro study demonstrated that DDIT3 exacerbated ECM degradation in chondrocytes induced by TNF-α through inhibiting autophagy. The intraperitoneal injection of CQ further confirmed that Ddit3 knockout alleviated cartilage degradation in TMJOA through activating autophagy in vivo. CONCLUSIONS: Our findings identified the crucial role of DDIT3-inhibited autophagy in condylar cartilage degradation during the development of TMJOA.

17.
Glob Ment Health (Camb) ; 11: e54, 2024.
Article En | MEDLINE | ID: mdl-38721485

Background: Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear. Objectives: To investigate status and associated factors of nurses' burnout during COVID-19 regular prevention and control. Methods: 784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor-Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory. Results: 310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA. Conclusion: Chinese nurses' burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.

18.
Eur J Med Chem ; 272: 116464, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38704940

Diabetes mellitus is a chronic metabolic disorder characterized by high blood glucose levels, which can cause many diseases, including osteoporosis, fractures, arthritis, and foot complications. The inhibitors of dipeptidyl peptidase-4 (DPP-4), an enzyme involved in glucose metabolism regulation, are essential for managing Type 2 Diabetes Mellitus (T2DM). The inhibition of DPP-4 has become a promising treatment approach for T2DM because it can increase levels of active glucagon-like peptide-1 (GLP-1), leading to improved insulin secretion in response to glucose and reduced release of glucagon. The review commences by elucidating the role of DPP-4 in glucose homeostasis and its significance in T2DM pathophysiology. Furthermore, it presents the mechanism of action, preclinical pharmacodynamics, clinical efficacy, and toxicity profiles of small-molecule DPP-4 inhibitors across various clinical stages. This comprehensive review provides valuable insights into the synthesis and clinical application of DPP-4 inhibitors, serving as an invaluable resource for researchers, clinicians, and pharmaceutical professionals interested in diabetes therapeutics and drug development.


Diabetes Mellitus, Type 2 , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Animals , Molecular Structure , Structure-Activity Relationship
19.
Appl Opt ; 63(10): 2535-2542, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38568533

Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-frequency and wide-band signals. However, the accuracy of the MFM system in multi-tone frequency measurement is constrained by the SBS bandwidth and the nonlinearity of the system. To resolve this problem, a method based on an artificial neural network (ANN) is suggested, which can establish a nonlinear mapping between the measured two-tone signal spectra and the theoretical frequencies. Through simulation verification, the ANN optimized frequencies within the range of (0.5, 27) GHz of the MFM system show 79%, 76%, 70%, 44% reduction in errors separately under four spectral signal-to-noise ratios (SNR) conditions, 20 dB, 15 dB, 10 dB, 0 dB, and the frequency resolution is improved from 30 MHz to 10 MHz.

20.
Environ Technol ; : 1-12, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38584437

Magnetic Fe3O4 nanoparticles were added into the aqueous phase to form nanofluid systems, in which ozone was used for the oxidation of tetracycline hydrochloride (TC) in the solution. The nanomaterials were characterized using SEM, XRD, EDS, and FT-IR. The effects of nanoparticles size, addition ratio, and number of cycles on the process of ozone oxidation of TC were investigated. The results indicated that the addition ratio of nanoparticles have a certain impact on the performance of ozone oxidation. When the addition ratio increased from 0.02% to 0.4%, the removal rate of TC in the solution was improved significantly. Besides, the particle size of nanoparticles showed a greater impact on ozone oxidation. At the nanoscale, Fe3O4 nanoparticles exhibited significant strengthening properties, which is attributed to the construction of nanofluid systems. The removal rate of TC in solution decreased obviously with the increase of nanoparticles size. The Fe3O4 nanoparticles with particle size of 20 nm showed the most significant effect on TC degradation. The recycling experiment showed that magnetic Fe3O4 nanoparticles had stable regeneration performance. For three times of recycling treatment, with a Fe3O4 addition ratio of 0.4%, the removal rate of TC reached 98.7%, 97.21%, and 96%, respectively. Based on the characterization results, the strengthening mechanism was analyzed. The experimental results indicated that construction of nanofluids systems could improve the utilization rate of ozone, and Fe3O4 nanoparticles were reusable and easily recyclable.

...