Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
ACS Polym Au ; 3(6): 457-465, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38107413

ABSTRACT

Molecular architecture is a critical factor in regulating phase behaviors of the block copolymer and prompting the formation of unconventional nanostructures. This work meticulously designed a library of isomeric miktoarm star polymers with an architectural evolution from the linear-branched block copolymer to the miktoarm star block copolymer and to the star-like block copolymer (i.e., 3AB → 3(AB1)B2 → 3(AB)). All of the polymers have precise chemical composition and uniform chain length, eliminating inherent molecular uncertainties such as chain length distribution or architectural defects. The self-assembly behaviors were systematically studied and compared. Gradually increasing the relative length of the branched B1 block regulates the ratio between the bridge and loop configuration and effectively releases packing frustration in the formation of the spherical or cylindrical structures, leading to a substantial deflection of phase boundaries. Complex structures, such as Frank-Kasper phases, were captured at a surprisingly higher volume fraction. Rationally regulating the molecular architecture offers rich possibilities to tune the packing symmetry of block copolymers.

2.
Langmuir ; 39(47): 16854-16862, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956463

ABSTRACT

The behavior of giant amphiphilic molecules at the air-water interface has become a subject of concern to researchers. Small changes in the molecular structure can cause obvious differences in the molecular arrangement and interfacial properties of the monolayer. In this study, we have systematically investigated the interfacial behaviors of the giant amphiphilic molecules with different number of hydrophobic BPOSS blocks and one hydrophilic ACPOSS block ((BPOSS)n-ACPOSS (n = 1-5)) at the air-water interface by the surface pressure-area (π-A) isotherm, Brewster angle microscopy (BAM), compression modulus measurement, and hysteresis measurement. We found that both the number of BPOSS blocks and the compression rate can significantly influence the interfacial behaviors of giant molecules. The π-A isotherms of giant molecules (BPOSS)n-ACPOSS (n = 2-5) exhibit a "cusp" phenomenon which can be attributed to the transition from monolayer to multilayer. However, the cusp is dramatically different from the "collapse" of the monolayer studied in other molecular systems, which is highly dependent on the compression rate of the monolayer. In addition, the compression modulus and hysteresis measurements reveal that the number of BPOSS blocks of (BPOSS)n-ACPOSS plays an important role in the static elasticity, stability, and reversibility of the Langmuir films.

3.
J Am Chem Soc ; 145(1): 487-497, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36572645

ABSTRACT

This work demonstrates an effective and robust approach to regulate phase behaviors of a block copolymer by programming local features into otherwise homogeneous linear chains. A library of sequence-defined, isomeric block copolymers with globally the same composition but locally different side chain patterns were elaborately designed and prepared through an iterative convergent growth method. The precise chemical structure and uniform chain length rule out all inherent molecular defects associated with statistical distribution. The local features are found to exert surprisingly pronounced impacts on the self-assembly process, which have yet to be well recognized. While other molecular parameters remain essentially the same, simply rearranging a few methylene units among the alkyl side chains leads to strikingly different phase behaviors, bringing about (i) a rich diversity of nanostructures across hexagonally packed cylinders, Frank-Kasper A15 phase, Frank-Kasper σ phase, dodecagonal quasicrystals, and disordered state; (ii) a significant change of lattice dimension; and (iii) a substantial shift of order-to-disorder transition temperature (up to 40 °C). Different from the commonly observed enthalpy-dominated cases, the frustration due to the divergence between the native molecular geometry originating from side chain distribution and the local packing environment mandated by lattice symmetry is believed to play a pivotal role. Engineering the local chain feature introduces another level of structural complexity, opening up a new and effective pathway for modulating phase transition without changing the chemistry or composition.

4.
Macromol Rapid Commun ; 44(1): e2200509, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35975733

ABSTRACT

In this study, polyhedral oligomeric silsesquioxane (POSS) based giant triblock molecules with precisely defined regio-configuration are modularly prepared through highly efficient coupling reactions. The length of the linker connecting neighboring nanoparticles is elaborately designed to regulate the geometric constraints. The triblock molecules adopt a folded packing during phase separation, and the regio-configuration imparts direct influence on the self-assembly behaviors. The ortho-isomers form periodic structures with a larger domain size, larger interfacial curvature, and enhanced phase stability. The regio-effect is closely related to the length and symmetry of the linker. As the linker extends, the neighboring particles gradually decouple, and the regio-effect diminishes. The symmetry of the linker shows an even more profound impact. This work quantitatively scrutinized the role of the linker, opening an avenue for engineering the assembled structures with molecular precision.


Subject(s)
Organosilicon Compounds , Organosilicon Compounds/chemistry
5.
ACS Macro Lett ; 11(4): 555-561, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35575328

ABSTRACT

The inherent statistical heterogeneities associated with chain length, composition, and architecture of synthetic block copolymers compromise the quantitative interpretation of their self-assembly process. This study scrutinizes the contribution of molecular architecture on phase behaviors using discrete ABA triblock copolymers with precise chemical structure and uniform chain length. A group of discrete triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions. The symmetric ABA triblock copolymers self-assemble into long-range ordered structures with expanded domain spacings and enhanced phase stability, compared with the diblock counterparts snipped at the middle point. By tuning the relative chain length of two end blocks, the molecular asymmetry reduces the packing frustration, and thus increases the order-to-disorder transition temperature and enlarges the domain sizes. This study would serve as a quantitative model system to correlate the experimental observations with the theoretical assessments and to provide quantitative understandings for the relationship between molecular architecture and self-assembly.

6.
J Am Chem Soc ; 143(44): 18744-18754, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34714634

ABSTRACT

Molecular shape is an essential parameter that regulates the self-organization and recognition process, which has not yet been well appreciated and exploited in block polymers due to the lack of precise and efficient modulation methods. This work (i) develops a robust approach to break the intrinsic symmetry of linear polymers by introducing geometric features into otherwise homogeneous chains and (ii) quantitatively highlights the critical contribution of molecular geometry/architecture to the self-assembly behaviors. Iteratively connecting homologous monomers of different side chains according to pre-designed sequences generates discrete polymers with exact chemical structure, uniform chain length, and programmable side-chain gradient along the backbone, which transcribes into diverse shapes. The precise chemistry eliminates all the defects and heterogeneities, providing a delicate platform for fundamental inquiries into the role of molecular geometry. A rich collection of unconventional complex phases, including Frank-Kasper A15 and σ phases, as well as a dodecagonal quasicrystal phase, were captured in these rigorous single-component systems. The self-assembly behaviors are strikingly sensitive to subtle variations of geometry, such that simply migrating a few methylene units among the side chains would generate substantial differences in lattice size or phase stability, or even trigger a phase transition toward distinct structures. The phenomena can be rationalized with a geometric argument that nonuniform side chain distribution leads to conformational mismatch between two immiscible blocks, resulting in varied interfacial curvatures and distinct lattice symmetries. The profound contribution demonstrates that molecular geometry is an effective and robust parameter for structural engineering.

7.
JACS Au ; 1(1): 79-86, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-34467271

ABSTRACT

As size-amplified analogues of canonical macromolecules, polymeric chains built up by "giant" monomers represent an experimental realization of the "beads-on-a-string" model at larger length scales, which could provide insights into fundamental principles of polymer science. In this work, we modularly constructed discrete giant polymeric chains using nanosized building blocks (polyhedral oligomeric silsesquioxane, POSS) as basic repeat units through an efficient and robust iterative exponential growth approach, with precise control on molecular parameters, including size, composition, regioconfiguration, and surface functionalities. Their chemical structures were fully characterized by nuclear magnetic resonance spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. With elaborately designed amphiphilic block POSS chains and their analogues made of conventional monomers, the size effects were delicately studied and highlighted. Interesting assembly behaviors emerge as a result of distinct interactions and molecular dynamics. This category of molecules shares general self-assembly characteristics as the conventional counterparts in terms of phase transition and evolution. Meanwhile, it turns out that the monomer size has profound impacts on phase stability, as a trade-off between entropic and enthalpic contributions. It may open up a door for modular and programmable design of interesting materials with complex structures and diverse functions.

8.
ACS Nano ; 15(7): 12367-12374, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34236829

ABSTRACT

Polymeric chains made of "giant" monomers at a larger length scale provide intriguing insights into the fundamental principles of polymer science. In this study, we modularly prepared a library of discrete amphiphilic polymeric chains using molecular nanoparticles as repeat units, with exact control of composition, chain length, surface property, and regio-configuration. These giant polymeric chains self-assembled into a rich collection of highly ordered phases. The precise chemical structure and uniform chain length eliminate all the inherent molecular "defects", while the nanosized monomer amplifies minute structural differences, providing an ideal platform for a systematic scrutiny of the self-assembly behaviors at a larger length scale. The compositional and regio-configurational contribution was carefully studied. The regio-regularity is found to have a direct and profound impact on the chain conformation, leading to a distinct molecular packing scheme and therefore shifting the phase boundaries. With increasing the length of the linker, the regio-constraint gradually diminishes, and the neighboring particles would eventually be decoupled.

9.
ACS Macro Lett ; 10(10): 1300-1305, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-35549051

ABSTRACT

Self-assembly of chiral block copolymers (BCPs*) can give rise to ordered chiral nanostructures, that is, a helical phase (H* phase), via chirality transfer from the molecular level to mesoscale. In the present work, we reported the self-assembly of BCPs* under one-dimensional spatial confinement. The morphological dependence of self-assembled BCPs* on the molecular weights and the film thickness was investigated. As chiral nanostructures, the H* phase can be formed in bulk, nonchiral nanostructures that were observed in the thin films. Also, the topology effect of self-assembly of BCPs* was examined. The self-assembly of BCPs* with a star-shaped topology exhibited a distinct morphology compared with that of linear BCPs*. The present work provides new insight into the chirality transfer of macromolecules under spatial confinement.

10.
ACS Cent Sci ; 6(8): 1386-1393, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32875079

ABSTRACT

This work describes the first rigorous example of a single-component block copolymer system forming unconventional spherical phases. A library of discrete block polymers with uniform chain length and diverse architectures were modularly prepared through a combination of a step-growth approach and highly efficient coupling reactions. The precise chemical structure eliminates all the molecular defects associated with molar weight, dispersity, and compositional ratio. Complex spherical phases, including the Frank-Kasper phase (A15 and σ) and quasicrystalline phase, were experimentally captured by meticulously tuning the composition and architectures. A phase portrait with unprecedented accuracy was mapped out (up to one monomer resolution), unraveling intriguing details of phase behaviors that have long been compromised by inherent molecular weight distribution. This study serves as a delicate model system to bridge the existing gaps between experimental observations and theoretical assessments and to provide insights into the formation and evolution of the unconventional spherical phases in soft matter systems.

11.
ACS Nano ; 14(10): 13816-13823, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32935968

ABSTRACT

Anisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (i.e., Frank-Kasper σ phase and dodecagonal quasicrystalline phase). As the size of the hydrophilic patch expands, a transition sequence from disorder to hexagonally packed cylinders and then to double gyroids was recorded, corresponding to a progressive decrease of interfacial curvature. On the other hand, regioisomers with the same composition but different regio-configuration adopt similar molecular packing but varied phase stability, as a result of the local self-sorting process to alleviate excess unfavorable interfacial contact. These precisely defined molecular patchy clusters provide a model system for a general understanding of the hierarchical structure formation and evolution based on anisotropic spherical building blocks at the nanoscale.

12.
Chemistry ; 26(30): 6741-6756, 2020 May 26.
Article in English | MEDLINE | ID: mdl-31961977

ABSTRACT

Hierarchical structures are important for transferring and amplifying molecular functions to macroscopic properties of materials. In this regard, rodlike molecules have emerged as one of the most promising molecular building blocks to construct functional materials. Although the self-assembly of conventional molecules containing rodlike components generally results in nematic or layered smectic phases, due to the preferred parallel arrangements of rodlike components, extensive efforts have revealed that rational molecular design provides a versatile platform to engineer rich self-assembled structures. Herein, first successes achieved in polyphilic liquid crystals and rod-coil block systems are summarized. Special attention is paid to recent progress in the conjugation of rodlike building blocks with other molecular building blocks through the molecular Lego approach. Rod-based giant surfactants, sphere-rod conjugates, and dendritic rodlike molecules are covered. Future perspectives of the self-assembly of molecules containing rodlike components are also provided.

13.
ACS Sens ; 4(11): 2869-2878, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31702912

ABSTRACT

In nearly all biosensors, sensitivity is greatly reduced for measurements conducted in biological matrices due to nonspecific binding from off-target molecules. One method to overcome this issue is to design a sensor that enables selective size-based uptake of proteins. Herein, a protein-polymer conjugate thin-film biosensor is fabricated that self-assembles into lamellae containing alternating domains of protein and polymer. Analyte is captured in protein regions while polymer domains restrict diffusion of large molecules. Device sensitivity and size-based exclusion properties are probed using two analytes: streptavidin (SA, 52.8 kDa) and monomeric streptavidin (mSA2, 15.6 kDa). Tuning domain spacing by adjusting polymer molecular weight allows the design of films that relatively freely uptake mSA2 and largely restrict SA diffusion. Furthermore, when detecting the smaller mSA2, no reduction in the limit of detection (LOD) is observed when transitioning from detection in the buffer to detection in biological fluids. As a result, LOD measured in fluid samples is reduced by 2 orders of magnitude compared to a traditional surface-immobilized protein monolayer.


Subject(s)
Biosensing Techniques , Body Fluids/chemistry , Polymers/chemistry , Streptavidin/analysis , Diffusion , Humans , Particle Size , Surface Properties
14.
Soft Matter ; 15(36): 7108-7116, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31482930

ABSTRACT

In biological systems, it is well-known that the activities and functions of biomacromolecules are dictated not only by their primary chemistries, but also by their secondary, tertiary, and quaternary hierarchical structures. Achieving control of similar levels in synthetic macromolecules is yet to be demonstrated. Most of the critical molecular parameters associated with molecular and hierarchical structures, such as size, composition, topology, sequence, and stereochemistry, are heterogenous, which impedes the exploration and understanding of structure formation and manipulation. Alternatively, in the past few years we have developed a unique giant molecule system based on molecular nanoparticles, in which the above-mentioned molecular parameters, as well as interactions, are precisely defined and controlled. These molecules could self-assemble into a myriad of unconventional and unique structures in the bulk, thin films, and solution. Giant molecules thus offer a robust platform to manipulate the hierarchical structures via precise and modular assemblies of building blocks in an amplified size level compared with small molecules. It has been found that they are not only scientifically intriguing, but also technologically relevant.


Subject(s)
Macromolecular Substances/chemistry , Nanoparticles/chemistry , Dimerization , Molecular Structure , Nucleic Acids/chemistry , Particle Size , Phase Transition , Polymers/chemistry , Surface Properties , Temperature
15.
Chem Sci ; 10(46): 10698-10705, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-32055380

ABSTRACT

As one of the most critical molecular parameters, molecular weight distribution has a profound impact on the structure and properties of polymers. Quantitative and comprehensive understanding, however, has yet to be established, mainly due to the challenge in the precise control and regulation of molecular weight distribution. In this work, we demonstrated a robust and effective approach to artificially engineer the molecular weight distribution through precise recombination of discrete macromolecules. The width, symmetry, and other characteristics of the distribution can be independently manipulated to achieve absolute control, serving as a model platform for highlighting the importance of chain length heterogeneity in structural engineering. Different from their discrete counterparts, each individual component in dispersed samples experiences a varied degree of supercooling at a specific crystallization temperature. Non-uniform crystal nucleation and growth kinetics lead to distinct molecular arrangements. This work could bridge the gap between discrete and dispersed macromolecules, providing fundamental perspectives on the critical role of molecular weight distribution.

16.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1287-1291, 2017 Apr.
Article in Chinese | MEDLINE | ID: mdl-29052388

ABSTRACT

The study identified the main morphological index of the seedlings classification including seedling age,the root width and number of newborn buds and coarse roots, according to the local agricultural production techniques and assessment of Liriope spicata's growth and development condition. After carrying on K cluster analysis of the morphological, we separated the seedlings into two levels. The first level (Ⅰ): the new talent with the root width exceeding two point five millimeters, the new born buds exceeding three, and with the coarse root exceeding one. The second level (Ⅱ): the old talent with the root width below one millimeters, the newborn buds below two and without coarse root. The study surveyed the plants' growth index dynamics, as well as the yield and quality of the tuberous root. The experimental results suggested that the growth condition of seedling Ⅰwas better, the yield of earthnut higher, the quality of earthnut more excellent. The study lied the foundation of L. spicata's grading standards and standardized production.


Subject(s)
Liriope Plant/growth & development , Seedlings/growth & development , Plant Roots/growth & development
17.
Angew Chem Int Ed Engl ; 56(5): 1273-1277, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28029202

ABSTRACT

Three-dimensional (3D) ordered arrays of human immunoglobulin G (IgG) were fabricated using well-defined full-length antibody-polymer conjugates (APCs). The conjugates were prepared through a two-step sequential click approach with a combination of oxime ligation and strain promoted alkyne-azide cycloaddition. They were able to self-assemble into lamellar nanostructures with alternating IgG and poly(N-isopropylacrylamide) (PNIPAM) nanodomains. As a proof-of-concept, these materials were fabricated into thin films and their specific binding ability was tested. The nanostructure not only improves the packing density and the proper orientation of the IgG, but also provides nanochannels to facilitate substrate transport.


Subject(s)
Acrylic Resins/chemistry , Immunoglobulin G/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Copper/chemistry , Cycloaddition Reaction , Humans , Microscopy, Fluorescence , Nanostructures/chemistry , Scattering, Small Angle , X-Ray Diffraction
18.
Environ Sci Pollut Res Int ; 23(21): 21511-21516, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27510165

ABSTRACT

Ostrinia furnacalis (Guenée) and Helicoverpa armigera (Hübner) are the most important pests of maize in China. A laboratory study and a 2-year field study on the efficacy of transgenic maize expressing the Cry1Ac protein BT38 against O. furnacalis and H. armigera were performed. We found that the husks, kernels, and silks of BT38 showed significant efficacy against larvae of O. furnacalis and H. armigera. In the field, when neonate larvae of O. furnacalis and H. armigera were on plants at different growth stages and when levels of leaf-damage or number of damaged silks were used to score efficacy, we found that BT38 showed significant insecticidal efficacy against O. furnacalis and H. armigera, but the non-Bt maize did not show significant efficacy against either pest. These results suggest that the insecticidal efficacy of Bt maize expressing the Cry1Ac protein could be useful in the integrated pest management of these key maize pests.


Subject(s)
Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Moths/drug effects , Pest Control, Biological , Zea mays/physiology , Animals , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , China , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Larva/drug effects , Larva/physiology , Moths/growth & development , Moths/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Zea mays/genetics
19.
ACS Cent Sci ; 2(1): 48-54, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-27163025

ABSTRACT

Herein we introduce a unique synthetic methodology to prepare a library of giant molecules with multiple, precisely arranged nano building blocks, and illustrate the influence of minute structural differences on their self-assembly behaviors. The T8 polyhedral oligomeric silsesquioxane (POSS) nanoparticles are orthogonally functionalized and sequentially attached onto the end of a hydrophobic polymer chain in either linear or branched configuration. The heterogeneity of primary chemical structure in terms of composition, surface functionality, sequence, and topology can be precisely controlled and is reflected in the self-assembled supramolecular structures of these giant molecules in the condensed state. This strategy offers promising opportunities to manipulate the hierarchical heterogeneities of giant molecules via precise and modular assemblies of various nano building blocks.

20.
Soft Matter ; 12(15): 3570-81, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26965053

ABSTRACT

Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.


Subject(s)
Polyelectrolytes/chemistry , Proteins/chemistry , Animals , Cattle , Micelles , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...