Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 13(11): e1465, 2023 11.
Article in English | MEDLINE | ID: mdl-37997519

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS: Fah-/-  mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS: RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+  T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45ß/JNK/c-Jun pathway. CONCLUSIONS: Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metformin , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Retinoic Acid 4-Hydroxylase/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Down-Regulation , AMP-Activated Protein Kinases/metabolism , CD8-Positive T-Lymphocytes/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Tretinoin/therapeutic use , Carcinogenesis , RNA
2.
Geospat Health ; 18(1)2023 05 25.
Article in English | MEDLINE | ID: mdl-37246533

ABSTRACT

This article examines three spatiotemporal methods used for analyzing of infectious diseases, with a focus on COVID-19 in the United States. The methods considered include inverse distance weighting (IDW) interpolation, retrospective spatiotemporal scan statistics and Bayesian spatiotemporal models. The study covers a 12-month period from May 2020 to April 2021, including monthly data from 49 states or regions in the United States. The results show that the spread of COVID-19 pandemic increased rapidly to a high value in winter of 2020, followed by a brief decline that later reverted into another increase. Spatially, the COVID-19 epidemic in the United States exhibited a multi-centre, rapid spread character, with clustering areas represented by states such as New York, North Dakota, Texas and California. By demonstrating the applicability and limitations of different analytical tools in investigating the spatiotemporal dynamics of disease outbreaks, this study contributes to the broader field of epidemiology and helps improve strategies for responding to future major public health events.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , Pandemics , Retrospective Studies , Bayes Theorem , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...