Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2024: 9985719, 2024.
Article in English | MEDLINE | ID: mdl-38221912

ABSTRACT

Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder with no conclusive remedy. Yohimbine, found in Rauwolfia vomitoria, may reduce brain inflammation by targeting tumour necrosis factor-alpha (TNFα), implicated in AD pathogenesis. Metoserpate, a synthetic compound, may inhibit TNFα. The study is aimed at assessing the potential utility of repurposing metoserpate for TNFα inhibition to reduce neuronal damage and inflammation in AD. The development of safe and effective treatments for AD is crucial to address the growing burden of the disease, which is projected to double over the next two decades. Methods: Our study repurposed an FDA-approved drug as TNFα inhibitor for AD management using structural similarity studies, molecular docking, and molecular dynamics simulations. Yohimbine was used as a reference compound. Molecular docking used SeeSAR, and molecular dynamics simulation used GROMACS. Results: Metoserpate was selected from 10 compounds similar to yohimbine based on pharmacokinetic properties and FDA approval status. Molecular docking and simulation studies showed a stable interaction between metoserpate and TNFα over 100 ns (100000 ps). This suggests a reliable and robust interaction between the protein and ligand, supporting the potential utility of repurposing metoserpate for TNFα inhibition in AD treatment. Conclusion: Our study has identified metoserpate, a previously FDA-approved antihypertensive agent, as a promising candidate for inhibiting TNFα in the management of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Drug Repositioning , Molecular Dynamics Simulation , Yohimbine/pharmacology , Yohimbine/therapeutic use
2.
BMC Pharmacol Toxicol ; 23(1): 1, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34983657

ABSTRACT

BACKGROUND: Pain relief remains a major subject of inadequately met need of patients. Therapeutic agents designed to treat pain and inflammation so far have low to moderate efficiencies with significant untoward side effects. FAAH-1 has been proposed as a promising target for the discovery of drugs to treat pain and inflammation without significant adverse effects. FAAH-1 is the primary enzyme accountable for the degradation of AEA and related fatty acid amides. Studies have revealed that the simultaneous inhibition of COX and FAAH-1 activities produce greater pharmacological efficiency with significantly lowered toxicity and ulcerogenic activity. Recently, the metabolism of endocannabinoids by COX-2 was suggested to be differentially regulated by NSAIDs. METHODS: We analysed the affinity of oleamide, arachidonamide and stearoylamide at the FAAH-1 in vitro and investigated the potency of selected NSAIDs on the hydrolysis of endocannabinoid-like molecules (oleamide, arachidonamide and stearoylamide) by FAAH-1 from rat liver. NSAIDs were initially screened at 500 µM after which those that exhibited greater potency were further analysed over a range of inhibitor concentrations. RESULTS: The substrate affinity of FAAH-1 obtained, increased in a rank order of oleamide < arachidonamide < stearoylamide with resultant Vmax values in a rank order of arachidonamide > oleamide > stearoylamide. The selected NSAIDs caused a concentration-dependent inhibition of FAAH-1 activity with sulindac, carprofen and meclofenamate exhibiting the greatest potency. Michaelis-Menten analysis suggested the mode of inhibition of FAAH-1 hydrolysis of both oleamide and arachidonamide by meclofenamate and indomethacin to be non-competitive in nature. CONCLUSION: Our data therefore suggest potential for study of these compounds as combined FAAH-1-COX inhibitors.


Subject(s)
Arachidonic Acids , Polyunsaturated Alkamides , Amidohydrolases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Enzyme Inhibitors/pharmacology , Fatty Acids , Humans , Polyunsaturated Alkamides/metabolism , Rats
3.
Proteomics ; 21(15): e2000234, 2021 08.
Article in English | MEDLINE | ID: mdl-34086420

ABSTRACT

Additional complexity in the post-translational modification of proteins by ubiquitin is achieved by ubiquitin phosphorylation, for example within PINK1-parkin mediated mitophagy. We performed a preliminary proteomic analysis to identify proteins differentially modified by ubiquitin in HEK293T, compared to phosphomimetic ubiquitin (Ser65Asp), and identified small ubiquitin-related modifier 2 (SUMO2) as a candidate. By transfecting SUMO2 and its C-terminal-GG deletion mutant, along with phosphomimetic ubiquitin, we confirm that ubiquitin modifies SUMO2, rather than vice versa. Further investigations revealed that transfected SUMO2 can also be conjugated by endogenous phospho-Ser65-(poly)ubiquitin in HEK293T cells, pointing to a previously unappreciated level of complexity in SUMO2 modification, and that unanchored (substrate-free) polyubiquitin chains may also be subject to phosphorylation.


Subject(s)
Proteomics , Ubiquitin , HEK293 Cells , Humans , Phosphorylation , Polyubiquitin , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL