Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Basic Med Sci ; 26(2): 235-240, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36742133

ABSTRACT

Objectives: Studying the effect of melatonin pretreatment and ischemic preconditioning on renal ischemia-reperfusion injury (IRI). Materials and Methods: Forty-eight Wistar rats were randomized into six groups: control, sham operation, IRI (IRI in left kidney + right nephrectomy), IRI+ischemic preconditioning, IRI+Melatonin, and IRI+ischemic preconditioning+Melatonin groups. Melatonin (10 mg/kg) was intraperitoneally injected for 4 weeks before renal IRI. Ischemic preconditioning was performed by three cycles of 2 min-ischemia followed by 5 min-reperfusion period. A right nephrectomy was initially done and the left renal artery was clamped for 45 min. After 24 hr of ischemia-reperfusion, rats were decapitated. Kidney tissue samples were taken for histopathological assessment and the determination of kidney proinflammatory and anti-inflammatory cytokines, apoptotic protein caspase-3, oxidative stress markers, and activities of antioxidant enzymes. Serum creatinine and blood urea nitrogen (BUN) concentrations were measured for evaluation of renal function. Results: Renal IRI animals showed increased levels of creatinine, BUN, tumor necrosis factor-α (TNF-α), caspase-3, total nitrite/nitrate, and malondialdehyde (MDA), and decreased levels of interleukin-13 (IL-13), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). Melatonin pretreatment or ischemic preconditioning resulted in decreased creatinine, BUN, TNF-α, caspase-3, nitrite/nitrate, and MDA, and increased IL-13, GPx, and SOD, with improved histopathological changes. Combined melatonin and ischemic preconditioning showed more effective improvement in renal IRI changes rather than melatonin or ischemic preconditioning alone. Conclusion: Combined melatonin and ischemic preconditioning have better beneficial effects on renal IRI than applying each one alone.

2.
Biomed Pharmacother ; 153: 113487, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076505

ABSTRACT

Idiopathic pulmonary fibrosis is a fatal lung disorder in which the etiology and pathogenesis are still unobvious. Effective treatments are urgently needed considering that lung transplantation is the only treatment that could improve outcomes. This study aimed to investigate the therapeutic significance of the dual administration of pimitespib, an HSP90 inhibitor, and nifuroxazide, a STAT3 inhibitor, against bleomycin-induced pulmonary fibrosis in rats. Our results revealed that pimitespib/nifuroxazide inhibited bleomycin-induced alterations in the structure and the function of the lungs. They demonstrated significant decreases in the BALF total and differential cell counts, LDH activity, and total protein. Concurrently, there was a reduction in the accumulation of collagen as proved by decreased hydroxyproline and the gene expression of COL1A1 accompanied by lower levels of PDGF-BB, TIMP-1, and TGF-ß. The levels of IL-6 were also downregulated. Pimitespib-induced inhibition of HSP90 led to subsequent inhibition of HIF-1α and STAT3 client proteins since the closed HSP90 would not enclose its client proteins. Therefore, pimitespib resulted in the repression of HIF-1α/CREB-p300 HAT as well as the STAT3/CREB-p300 HAT nuclear interactions. On the other hand, nifuroxazide resulted in a notable decline in pSTAT3 and HIF-1α levels. Subsequently, the combined effects of both drugs led to a substantial reduction in ECM deposition. Herein, pimitespib augmented nifuroxazide-induced disruption in the IL-6/STAT3/HIF-1α autocrine loop. Our findings also disclose that this novel loop is a promising therapeutic attack site for possible pulmonary fibrosis repression studies. Therefore, the use of pimitespib/nifuroxazide embodies an evolutionary perspective in managing pulmonary fibrosis.


Subject(s)
Antineoplastic Agents , Idiopathic Pulmonary Fibrosis , Animals , Antineoplastic Agents/pharmacology , Bleomycin/toxicity , Hydroxybenzoates , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Interleukin-6/metabolism , Lung , Nitrofurans , Rats , STAT3 Transcription Factor
3.
Biochem Biophys Rep ; 30: 101234, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35243015

ABSTRACT

BACKGROUND: Schizophrenia is a serious, complex mental disorder. The impairment of oxidative phosphorylation has a detrimental consequence on CNS function. Different ATP synthase subunits have been involved in the pathological process of various neurodegenerative disorders. Our goal was to evaluate the mRNA expression level of the ATP synthase membrane subunit c locus 1 (ATP5G1, also named ATP5MC1) gene in patients with schizophrenia. METHODS: Determination of the expression levels of ATP5G1 in plasma and peripheral blood mononuclear cells (PBMCs) were performed by real-time PCR in 90 controls and 90 patients with schizophrenia. RESULTS: Patients had significantly decreased ATP5G1 mRNA expression levels in both plasma and PBMCs compared to controls. The receiver operating characteristic curve was applied to detect a cut-off value of ATP5G1 expression in plasma and PBMCs. The ATP5G1 relative expression in PBMCs had better performance with a cut-off value ≤ 21 (AUC = 0.892, P < 0.001), sensitivity of 94.44%, and specificity of 72.22% in discriminating between schizophrenic patients. ATP5G1 expression in PBMCs was an independent predictor in schizophrenia. CONCLUSION: This study revealed a down-regulation of ATP5G1 expression in schizophrenia, precisely expression in PBMCs. That might give insight into the role of ATP5G1 gene in the pathogenesis of schizophrenia.

SELECTION OF CITATIONS
SEARCH DETAIL
...